Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.5064 INTRODUCTION TO MACHINE LEARNING
Phase 3: Hidden Markov Models cont’d (lecture 17)

In this lecture, we will explore the connection between two classes of generative
models that we have studied in previous lectures: mixture models and HMMs. Both of
these models involve inferring values for unobserved (latent) variables given values for
“observed” variables. In mixture models, latent variables y are components or clusters
(also class labels) while the observations = are vectors or symbols. In the context of
HMDMs, latent variables y are “tags” or “states” while observations z are output symbols
such as words or (more generally) vectors.

Our goal is to highlight similarities and differences between these models in light of
their inherent “modeling assumptions”. These assumptions have consequences in terms
of what the models can capture, how the latent variables are inferred, or how we can
estimate these models from incomplete data. For this purpose, we will look at fixed
length n sequences

Y1,Y2,---,Yn
T1,22,---,Tn
where, typically, variables y;, © = 1,...,n, are not observed while words x; are. Both of

our models can be used in this setting.

Independent Pair Generation We first assume that all the words in the sequence
are generated independently from the same mixture model. The mixture model is defined
by the prior (tag) probabilities P(y) together with the corresponding tag-conditional
output distributions P(z|y). The model assigns probability

P(xily:) P(v:)

to any observed pair (z;,y;), reflecting the fact that y; is sampled from P(y) and z; is
subsequently sampled from P(x|x;). Now, since each pair in the sequence is assumed to
be independent of other pairs, the probability of the whole sequence of pairs is:

P((zi,91), (x2,92), -5 (@ yn)) = Plaaly)p(y) P(@aly2) P(y2) - P(@nlyn) P(ya)1)

[P(yz)P(iﬂJ%)] (2)

=

Let’s now think about the case where y’s are not observed. The marginal probability of
any observation x is given by

Py(z) =) P(zly)P(y) (3)

where we are summing over all the ways that x could be generated from y. Since we
assume that each (x;,y;) pair in the sequence was independent of others; clearly

n

P(zy,...,x,) = pr(gcz) = H

n
i=1 =1

(4)

> Pl@ily:) P(y:)
”
We should obtain the same answer by summing over the y;’s in Eq.(2). Indeed we do

P(:L‘l,...,l’n) = Z P((xl’y1)7(x27y2)7"'7(xn7yn» (5>

S H[P(:z;i\yi)P(yi)]:H > Plaily) Plys) (6)

Can we think of this model as an HMM? In order to interpret the mixture model
as an HMM, we would have to set the prior probabilities, transition probabilities, and
the emission probabilities in such a way that the HMM would specify exactly the same
joint distribution over words x; and tags y;, i.e.,

n

PHMM(:E17$27 ey Ty Y1,Y2, - - 7yn) = Hp(xl|yl)P(yl)

=1

We can indeed achieve this if the HMM parameters are defined as follows:

b(x) = Plaly) (7)
Aij = Py =j) (8)
™ = P(yl = 2) (9>

Note that the transition probabilities in this case do not depend on the current tag/state
at all. In fact, regardless of the current state, the next state is chosen with probability
P(y;), the prior probability in the mixture model. As a result, there’s no dependence
between successive states. The corresponding trellis for the cases of two possible labels
y is shown below (note that the independence is hidden in the values of the transitions
rather than in the structure of the trellis).

Let’s now review how we estimate the mixture model when y’s are not observed. We
assume the same mixture for all the documents, and for all the words in the document.
We aim to maximize P(x1, s, ..., 2,) (for simplicity, restricting the estimation here for

2

XY X5 Y Xps V1

XY, X25Ys Xns Y2
Figure 1: The corresponding trellis.

a single document). Our goal is to find P(y) and P(z|y) that maximize P(xy,...,x,).
This is equivalent to maximizing the log-likelihood:

log P(z1, 9, ...,2,) = log H P (z;) = Z log P,(z;) (10)
i=1 i=1
Let’s write an EM algorithm for this model:
E-step
If we had tags v, ..., y,, we would evaluate the necessary counts as
count(z,y) = Z[[:U:xi&y:yiﬂ (11)
i=1

where, as before, [-] is an indicator function of the statement inside. Since the tags are

not given, we must infer them. Using the current model parameters, we evaluate the
posterior probability of y; given the observed word z;:

1) = P(zily:) P(y:)
POke) = Pl P(y) 2

Based on these posterior probabilities, the expected counts become

count(x,y) = E{Z[[x:xi&y:yimxl,_.,,xn} (13)
= ZE{H»’U:%&?J:%H\%} (14)

= Y3 Plyle)z =2 &y = ui] (15)

=1 y;

= ZP(M%‘)HIE = i (16)

M-step
5 _ me<x7y)
SR ST ERT o
Plaly) = —omt@y) (18)

2y count(z’, y))

Single Tag Sequence Generation Let’s consider a model at the other extreme.
Instead of generating all the tags independently, we assume that the words in the doc-
ument (sequence) share the same tag. In other words, we generate the tag only once.
The only possible pairs of sequences are then

T o ... Tn

The joint distribution over tags and the words is then

P(zy,...,20,9) :P(?J)HP(J?@’Z/) (19)

Note that P(z;]y) have the same form as before (but they will not be the same as before
after estimation). The probability of the whole sequence is also different since the shared
tag vy is generated only once.

When y is unknown, then any individual x; has the marginal probability given by

Py(z;) = P(xily) P(y) (20)

This looks exactly the same as before. However, since the tag is shared, the marginal
probability over all the 2’s is quite different

Play, ... x,) = ZP(ZJ)HP(%W) (21)

4

Is it possible to view this model as an HMM as well? Yes, it is. Again, we have to
specify the HMM parameters in such a way that the joint distribution Eq.(19) agrees
with that of the HMM. This holds when

by(z) = P(z]y) (22)
1 ifie=79

%j = {0 othervxj/ise (23)

m = Plyp=1) (24)

In other words, y; is the shared tag, sampled from P(y) as it should. The transition
probabilities ensure that the tag does not change and all the observations are generated
using the same tag. The trellis constructed for this HMM now looks like:

XV X35 Y X V1

X5 Y) Xos Yo X Yo

Figure 2: The corresponding trellis.

Let’s see how the EM algorithm looks for this model.

E-step
Since the tag is not known, we must infer it from the observations
Pyl o) = (W) [iey Plily) _ P(y) I/L,ln (zily) / (25)
P(ay...zy) Zy’ P(y)Hz‘:1 P(xily’)
Unlike before, the posterior depends on all the zq,...,x,. This is expected since the

tag is shared (each x; provides some evidence about what the underlying y should be).
The expected counts are then

count(z,y) = ZP(ylxl-‘-xn)ﬂxi:xﬂ (26)

= Plyler...z) Y [ai=z] (27)

= P(y|z;...x,) count(x) (28)

5

M-step The M-step is the same as for the previous model.

General HMM After these two special cases of dependencies along the sequence (no
dependence, shared tag), we can look at the more general case where each tag depends
only on the tag that came before.

n n

P, . @y Y1, Yn) = P(yl)HP(xikUi)Hp(yiwifl) (29)

i=1 1=2

As before, we are interested in predicting y given the observations x. Given that y;’s are
intertwined in a particular way, we need an algorithm that can handle both the cases of
independent tags (the first model) and fully dependent (the second model). There are
two relevant sources of information when we predict each tag:

e Previous words in the sequence as their tags influence the current one

e Future words in the sequence as their underlying tags depend on the current one

The goal is to express these sources of information by summarizing the past and the
future. For this reason, we introduce forward and backward probabilities (also discussed
in previous lecture). We will take a closer look at the forward probability here. There
are many ways to define the forward probabilities. We will adopt here the convention
that the forward probabilities specify the likelihood of generating observations (up to
but not including the current one) with the constraint that we end up with a particular
tag at the current step.

ay(j) = P(z1,...,xj-1,y; = y) = Z Py, .o,y Y-y = y) - (30)

Y155 Yj—1
A S Sy
r1 o ... Tj—1 ?

where the question marks are placeholders for the unobserved variables. Since we need
to sum over all the possible values for y; ...y;_1 to obtain the forward probabilities, it
may appear that the computation is prohibitively costly. We will show below how this
computation can be done using dynamic programming. Note also that if we do have the
forward probabilities, we can easily predict the next tag along the sequence:

ay(j)

P(y; =ylxy,...,xj1) = Sy () (31)

The forward algorithm (dynamic programming)

e Base Case: We have no observations and aim to predict the current (first) tag.
This is given by the prior tag probability

ay(1) = 7(y) (32)

e Recursive Case: Here we assume that we have already evaluated o,/ (j — 1) for
all ¥'. In order to extend these to a,(j) we have to generate the observation at
step 7 — 1 and transition into tag y at step j. Since the value of y" at step j — 1 is
unknown, we will sum over it, i.e., we consider all the possible ways of generating
the observations, and transitioning into y at step j:

Zay (J = Dby (wj-1)ay, (33)

Now let’s see if this definition of forward probability a@ makes sense in our previous
models. For illustrative purposes, we will look at sequences of length two.

Independent Pair Generation In our first model, we assumed that all the pairs are
independent. Clearly

ay(l) = Py =y) (34)
ay(2) = ZP y1 =y)P(z1]yr = ¥)P(y2 = y) (35)
= Ply=y ZP v =y)P(zi|lyn =) (36)

y/

N J/

doesn’t depend on y

SO

oy (2)
= 5 = Plr=y) (37)
Zy’ O‘y/(2)
as it should since, when each pair is independent of others, there’s no impact from an
earlier observation.

Py, = ylz1) =

Single Tag Sequence Generation In our second model, we assumed that all the
words in the sequence share the same tag. In this case,

ay(l) = Py = y) (38)
ay(2) = Zay (21)ayy, = Py = y)P(z1lys = y) (39)
Plys = yla1) = P(y1 = y)P(x1]yr = y) (40)

>y Py =y) P21y =)

as it should since z; does provide information about the shared tag.

