Analysis of Boolean Functions Feb 7, 2013

Lecture 1
Lecturer: Irit Dinur Scribe: Shay Mozes

1 Introduction

The main object of study in this course are boolean functions f : {0,1}" — {0, 1}, which are very natural
objects in a discrete, digital world. The usual course of mathematical (undergrad) education first introduces
continuous functions, and discrete ones are introduced much later. Sometimes one needs to make a decision
based on some value, a number z € [0,1]. For example, in a voting situation where x percent of the
population favors certain action. Since in the end one needs to decide yes or no, one has to perform a
"rounding”, moving from a continuous function to a discrete one. The further x is from 0 or 1, the worse
the "rounding error”. This tension between continuous and discrete that is found in real life also manifests
itself when analyzing Boolean functions.

1.1 Aspects of Boolean Functions that we will study

e Range is {0,1} as opposed to R, or [0, 1]. These functions correspond to “decisions”, not “valuations”

e Domain is {0,1}" is the product of n independent bits. The fact that the domain is a product of n
independent spaces, be it bits or some other space, will be very important.

e Probability space (implicit) over the domain. It is convenient to view as the product of n individual
probability spaces instead of just the uniform distribution over n-bit strings.
We will not be talking in this course about worst case behavior, but mostly consider average case (the

probability is over the inputs). When measuring norms/inner-products one always gets the expectation
value.

e Graph Structure over {0,1}" (metric). The Hamming Cube H,, = ({0,1}", E), where for z,y € {0,1}",
(z,y) € E iff x and y differ in exactly one bit. The Hamming distance corresponds to shortest paths
metric in H,,. We will be interested in, e.g., how a function behaves in relations to the metric (noise-
stable functions are those that are not sensitive to small changes under the metric). Another example
is the dependency of a function on a single specific variable, which corresponds to moving along an
edge of the graph. Other connections include the fact that a boolean function is a 2-coloring of H,,.
We will see relations to natural questions on graphs. E.g., cuts, expansion, etc...

The course will cover a set of tools. We will look at cool problems/applications using those tools, but
the goal is mostly introducing and studying the tools rather than the specific applications.

2 The Fourier Basis

A boolean function f: {—1,1}" — {—1,1} can be thought of as a vector (a truth table)
feR" =R?@R*®---R?.
—_———
n times

This is perhaps not the most natural way to think about a Boolean function, but this perspective will turn
out very useful.

1-1

Definition 1 (tensor product) For vector spaces U = RY,V = R% and vectors u € U,v € V, the tensor
product of u and v is the vector u @ v € R X% gjyen by

(’LL (9 U)ij = U;Vj.
The tensor product of U and V is

UV =span{u®@v:ueclUwveV}

1 -1
1®X_(1 1)
1 -1
Xex=1{_1 1
11
X®1_<—1 —1)
11
1@1_<1 1>,

and generally 1 @ y1 ®--- ®1 € R?" = RZ®R?®- - -®R2. Note that we don’t have to write a tensor product
(A —

Example: 1 = (1,1), x =(1,-1)

n times
in matrix form (very inconvenient in high dimensions...)

Claim 2 R?®--- ® R? = R?"

By definition, LHS C R2". We need to show O. We will show that LHS contains a set of 27 independent
vectors. This will be the Fourier basis.
We will use the following notation. It is useful to think of the vectors 1 and y as functions. We will use

z to denote the coordinate. x = 1 is the first coordinate and x = —1 is the second coordinate. We therefore
have:
1(z) =1 and x(z) = =.
1® x(z1,22) = L(21)x(22) = 72
X ®L(z1, 22) = x(z1)L(22) = 21

X @ x(21,72) = x(x1)x(72) = 2122

Definition 3 (Fourier Basis) For S C [n], let s Q' Si, where S; = { 1 ; i g

In other words, for every S, x1,...,Tn,

Xs (@1, ..., xn) = Hxi.

i€S
The functions {xs}s are called the Fourier Basis Functions or the Fourier Characters.

Definition 4 (Inner Product on RN) For f,g:{—1,1}" — R, define the standard inner product by

(.0 L ey @] = 5 Y f@)el)

ze{—1,1}n

Claim 5 If S # T then xs L xr (i-e, {xs,xT)=0).

1-2

Proof For n =1 then clearly (x,1) =1(1-1+1-(-1))=0.
In general, if fi ® f2, 91 ® go € R¥1¥% then, using x as indices for fi, g, and y for fa, ga,

(1® f2,01@92) = Euyf1® folz,y) 91 ® g2(,y)
= Euyfi(2)f2(y)91(2)g2(y)
= Efi(@)g1(2)Ey f2(y)g2(y)
= (f1,91)(f2,92)

Therefore, for S # T, (xs,xr) = [[;—; (Xs:, x7,) = 0, since at least one term in the product involves (x,1)
or (1, x) which are 0. B

Definition 6 (Fourier Coefficients) For f:{—1,1}" — R, the Fourier Coefficient of f at S is

FsE(f.xs) = Eveorap [(@)xs ().
Claim 7 =3 fs- xs
Proof [= agyg because yg form a basis of R2". But

fs = (f:xs) = O asxs, xs) = as.
|

Claim 8 (Parseval) Given f:{-1,1}" — {-1,1}, Y. f2 =1.

Proof Since the range of f is {—1,1}, f(z)? =1 for all z, so (f, f) = E.[f(x)f(x)] = 1. But, using the
Fourier representation of f, (f, f) = O ¢ foxs: > g fsxs) =D g fg. [|

The choice of basis 1, x seems a little arbitrary at this point. We will later see some reasons for this.
Another natural basis to have started with is the standard basis (0, 1), (1,0) for R2. When tensorized, this
yields the so-called standard (or computational) basis for R2". Many of the results that we shall see in this
course will relate the natural description of a function in the standard basis to the description through the
Fourier basis. For example, the “address” function, takes the first logn bits, treats them as an index and
outputs the bit at that index. While it is easy to describe in the standard basis, the Fourier representation
looks much less intuitive.

3 Linearity Testing

Linearity testing started the field of property testing and has been a very important influence and starting
points for several other reseach directions.
Boolean function can be written as functions over GFy, f : GF3 — GFb.

Definition 9 (Linear functions) f is a linear function if there exist aq,...,a, € GFy such that for all
a=(a...a,) €{0,1}",

flag...an) = iaiai(mod 2).
i=1

A linear function is just a parity of a subset of its bits.

Fact 10 f is linear if and only if Va,bf(a) + f(b) = f(a+b)

1-3

We are so used to this fact that we often treat the latter as the definition for linear functions. Let’s explore
what happens to this equivalence in the presence of noise or error. One direction is clear: if a linear
function is corrupted on 1% of the entries, does the above fact still (mostly) hold ? Yes, by union bound,
f(a) + f(b) = f(a+b) still holds with probability at least 0.97.

+ robustness

property

The other direction requires more work. Suppose we know that f(a) 4+ f(b) = f(a + b) holds for at least
99% of the choices of a,b. Is f necessarily close to a linear function? in other words, is there a small (say, 3
percent) part of the input space on which f can be changed to make it into a linear function?

Asking these kinds of questions helps understand which properties of an object are intrinsic and robustly
so. It is an example of a current trend of trying to understand if well-known equalities still hold in the
presence of noise, and how much noise can they tolerate.

Theorem 11 If Prob,; [f(a) + f(b) = f(a+b)] > 1 — € then there exists a linear function g such that
Prob, [f(a) = g(a)] > 1 —¢

To prove this theorem we need to find a linear function that is close to f. It is instructive to first try
to think whether there can be a function f : {0,1}" — {0,1} very far from any linear function yet
Probg s [f(a) + f(b) = f(a+b)] > 0.97.

Consider any ¢ € {0,1}". For each choice of a,b such that b = ¢ + a, we get a “guess” for f(c). We can
try to show that by taking the majority over these guesses, the resulting function is linear and close to f
with high probability. This is essentially the proof given by Blum, Luby and Rubinfeld.

The proof we will give is different. We first move from GF; to {—1,1} by 0 + 1 and 1 + —1. Le.,
;= (=1)%. If p:{0,1}" — {0,1} is linear (i.e., p=>_ aya; (mod 2)), define f:{-1,1}" — {-1,1} by

@1, mn) = F((=1)™, ..., (=1)% = (=1)Plaman),

Since p is linear, f(zy,...,2,) = (—1)2%% = [[(~1)*% = xg, where S = {i:a; = 1}. That is, f is a
tensor function! (This is why the Fourier basis elements are sometimes called the parity functions).

Let us rewrite the theorem in multiplicative notation. For vectors z,y of the same dimensions we will
use the notation x @ y to denote the coordinate-wise product of z and y. Le., (x ® y); = z;y;.

Theorem 12 (BLR) Let f : {—1,1}" — {—1,1} such that Prob,, [f(z)f(y) = f(x ®y)] > 1 —e. Then
there exists S such that Prob, [f(z) = xs(z)] > 1 —e.

Proof Since the range is {—1,1}, f(z)f(y) = f(z ® y) implies f(z)f(y)f(z ®y) = 1. We want to find
some S such that f is close to xg. It is natural to look in the Fourier representation of f. First, let us write
the hypothesis for f in analytical terms,

Eoyet—1 [f (@) f(y) f(z ©y)]

Ezy [(Z fSXS(@) (Z fTXT(t)) (Z fwxw(z© ?J))
S T W

Eey Z Fsxs (@) frxr(y) fwxw @)xw (y)
S, T,W

1-4

> fsfrfwEas [xs(@)xw (@) Ey [xr(y)xw ()]
S, T, W

= Y ferhw
S=T=W
N
S
< macfs Y072
S
= max s (1)

Here we used the fact that xw (z © y) = [Licw (* ©9)i = [Liew ®i [Liew ¥ = xw (2)xw (y), and Parseval’s
theorem. Now, by definition,

fs = Eof(x)xs(x) = Prob, [f(2) = xs(2)] — Prob, [f(2) # xs(x)] = 2Prob, [f(x) = xs(z)] — 1.

Similarly,

By f(2)f(y)f(z ©y) = 2Prob, [f(z) f(y) = f(zr © y)] - L.
By Eq. 1 there exists Sy such that fg, > E[f(z)f(y)f(z ®y)]. Hence,

Prob; [f(x) = xs,(x)] = Prob, , [f(2) f(y) = fx O y)] =1 -e

Our proof is related to that of BLR in factorizing E, ,, f(z) f(y) f(z ®y) into E, f(x) E, f(y) f(z © y). BLR
—_——

g(z)
“round” g(z) by taking the majority, while our proof uses the expectation value. We actually get a stronger
result than BLR. In the large error regime (sa,y € = 0.49) we still get that f is “close” to some linear function
(albeit with probability 0.51). This is significantly different than just a random function.

1-5

