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1 Recap

Last time, we considered the function where no variable has large influence. That is to find balanced
Boolean function that minimizes maxi Infi(f). It turns out that TRIBES achieves the best possible
bound, O(log n/n). This result is known as KKL theorem, and we will finish the proof in this
lecture. Before go into the proof, we summarize some results below:

Let ρ ∈ [0, 1], for any fixed x ∈ {−1, 1}, we define the ρ-correlated bit y to x, denoted by y ∼ Nρ(x),
that is with probability ρ we have y = x and with probability 1− ρ we have y uniformly random.
Usually, we also define δ = (1 − ρ)/2, then y = x with probability 1 − δ and y = −x with
probability δ. Furthermore, we say a n-bit string y is ρ-correlated to n-bit string x if each bit of y
is independently ρ-correlated to the corresponding bit of x.

For any fixed ρ ∈ [0, 1], the ρ-noisy hypercube graph is a weighted complete graph, where the nodes
are all the n-bit strings and the weight of an edge (x, y) is equal to the probability of taking x,
flipping each bit with probability δ and reaching y. Define Tρ to be

Tρ =

(
1− δ δ
δ 1− δ

)
Then the adjacency matrix of the ρ-noisy hypercube graph is the tensor product T⊗nρ . It is easy

to verify that all the eigenvectors are the Fourier bases χS with corresponding eigenvalues ρ|S|.
Further, we define the ρ-noisy stability of f to be Stabρ(f) = 〈f, Tρf〉 =

∑
S ρ
|S|f̂2S .

Let A ⊆ {−1, 1}n of size α2n and 1A(x) : {−1, 1}n → {0, 1} be the indicator function. Small
Set Expansion theorem states that Stabρ(1A) ≤ α2/(1+ρ). Note that since 1A is 0-1 function,
Stabρ(1A) = E[1A(x)1A(y)] = Pr[x ∈ A ∧ y ∈ A] = αPr[y ∈ A | x ∈ A]. So Stabρ(1A) is the
probability that a random walk starting at a point x ∈ A remains in A, normalized by the density
of A. And Small Set Expansion is equivalently stated as Pr[y ∈ A | x ∈ A] ≤ α(1−ρ)/(1+ρ). In
particular, when α is small, this probability is is very small, i.e. the noisy hypercube graph is a
good expander.

To prove Small Set Expansion theorem, we need the (4, 2)-hypercontractivity lemma due to Bonami,
which states that the 4-norm of T1/

√
3f is at most the 2-norm of f . We will state both theorems

explicitly in the next section.

2 Proof of Small Set Expansion theorem and KKL theorem

Definition 1. (p-norm) Let p ≥ 1 and f : {−1, 1}n → R, define the p-norm of f be Ex[|f(x)|p]1/p.

Lemma 2. (Hypercontractivity) Let f : {−1, 1}n → R and ρ = 1/
√

3. Then ‖Tρf‖4 ≤ ‖f‖2.
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Theorem 3. (Small Set Expansion) Let A ⊆ {−1, 1}n with density α and f = 1A be the indicator
function. Then Stab1/3(f) ≤ α3/2.

Proof. Using the Fourier expansion of the noise operator, we have

〈f, T1/3f〉 =
∑
S

f̂2S/3
|S| = 〈T1/√3f, T1/√3f〉 = ‖T1/√3f‖

2
2 (1)

By Holder’s Inequality that Ex[f(x)g(x)] ≤ ‖f‖p · ‖g‖q for any p, q ≥ 1 and 1/p+ 1/q = 1, we have

〈f, T1/3f〉 ≤ ‖f‖4/3 · ‖T1/3f‖4 = ‖f‖4/3 · ‖T1/√3(T1/√3f)‖4 ≤ ‖f‖4/3 · ‖T1/√3f‖2 (2)

where we also use Bonami’s hypercontractivity lemma for T1/
√
3f in the second inequality. Combine

(1) and (2), and note that f(x)4/3 = f(x) since f is 0-1 function, we have

‖T1/√3f‖2 ≤ ‖f‖4/3 = E[f(x)4/3]3/4 = α3/4

Therefore we have Stab1/3(f) = 〈f, T1/3f〉 = ‖T1/√3f‖
2
2 ≤ α3/2.

Theorem 4. (KKL) Let f : {−1, 1}n → {−1, 1} with E[f ] = 0. Then there exists i ∈ [n] such that
Infi(f) = Ω(log n/n).

Proof. The approach is to prove that either the total influence Inf(f) is large, say Ω(log n), and
therefore the theorem follows, or there exists some i with Infi(f) ≥ 1/

√
n. Recall the derivative

operator (Dif)(x) = (f(x)− f(x⊕i))/2. The idea is to apply the Small Set Expansion theorem to
Dif and sum over all i ∈ [n]. Although the Small Set Expansion theorem originally states for 0-1
functions, but what actually used in the proof is that f(x)4/3 = |f(x)|, which is also the case for
Dif . Note that the (absolute value) density of Dif is Infi(f), then we have

n∑
i=1

〈Dif, T1/3(Dif)〉 ≤
n∑
i=1

Infi(f)
√

Infi(f) ≤ Inf(f)
√

max{Infi(f)} (3)

On the other hand, we have

n∑
i=1

〈Dif, T1/3(Dif)〉 =
n∑
i=1

∑
S3i

f̂2S/3
|S| =

∑
|S|≥1

|S|f̂2S/3|S|

≥
∑

1≤|S|≤2Inf(f)

|S|f̂2S/3|S|

≥
∑

1≤|S|≤2Inf(f)

2Inf(f)f̂2S/3
2Inf(f) (4)

≥ Inf(f)/32Inf(f) (5)

where (4) uses the fact that x/3x is a decreasing function when x ≥ 1, and (5) uses Markov’s
inequality

∑
|S|≥2Inf(f) f̂

2
S ≤ 1/2 along with the assumption that f is balanced. Combine (3) and

(5), we have max{Infi(f)} ≥ 1/34Inf(f). That is that either Inf(f) ≥ log n/8 log 3 or max{Infi(f)} ≥
1/
√
n.
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We also note that there is an interesting corollary of KKL theorem, though not mentioned in the
lecture, that a O(1/ log n) fraction of voters can collaboratively bias the outcome of an almost
balanced voting scheme in their favor with probability 99%.

Theorem 5. Let f : {−1, 1}n → {−1, 1} is almost balanced (V ar[f ] ≥ Ω(1)), then for all ε > 0,
there exists a coalition J ⊆ [n] of size at most O(log(1/ε))n/ log n such that InfJ(f) ≥ 1− ε.

Here InfJ of coalition J is a generalization of influence of i-th bit. For formal definition and
properties, see Section 2 and 3 in [1]. For a proof for this theorem, see Corollary 4.5 in [1].

Definition 6. (Juntas) Let f : {−1, 1}n → {−1, 1}. Then f is a juntas function on J iff there
exists some function g : {−1, 1}|J | → {−1, 1} such that f(x1, . . . , xn) = g(xJ).

We also list two related result: Friedgut’s Juntas Theorem says that Boolean function with small
total influence are “close” to juntas function, and FKN theorem says that Boolean functions with
big level-1 degree are close to ±DICTi.

Theorem 7. (Friedgut’s Junta Theorem) Let f : {−1, 1}n → {−1, 1}. Then for every 0 < ε < 1,
there exists some juntas function g on J with |J | = 2O(Inf(f)/ε) such that ‖f − g‖2 ≤ ε.

Theorem 8. (Friedgut-Kalai-Naor) Let f : {−1, 1}n → {−1, 1} and W 1(f) =
∑
|S|=1 f̂

2
S. If

W 1(f) ≥ 1− ε, then there exists some i ∈ [n] such that ‖f − DICTi‖2 ≤ O(ε) or ‖f + DICTi‖2 ≤
O(ε). Specially, W 1(f) = 1 iff f = ±DICTi.

3 Dictatorship versus Quasirandomness Test

Before stating the definition of quasirandom function, we briefly describe the motivations. Func-
tions with quasirandom property can be used to prove inapproximability of constraint satisfaction
problems. The Boolean hypercube serves as a gadget in inapproximate reductions. Concretely, we
use the “long code” to encode elements in [n] to functions from {−1, 1}n to {−1, 1} by mapping i
to χ{i}, and decoded by most influential i. We’d like to use some noisy version of influence in order
to avoid the case that f is very spiky. And at last, we want to distinguish dictator functions from
functions that each coordinate has small noisy influence.

Definition 9. (noisy influence) Let f : {−1, 1}n → R and δ ∈ [0, 1]. The i-th δ-noisy influence of

f is Inf
(δ)
i (f) = Infi

(
T1−δf
1−δ

)
=
∑

S3i(1− δ)|S|−1f̂2S.

Definition 10. (quasirandom) Let f : {−1, 1}n → R and ε, δ ∈ [0, 1]. We say that f is (ε, δ)-

quasirandom if Inf
(δ)
i (f) ≤ ε for all i ∈ [n].

Here δ is a parameter. When δ = 0, we have Inf
(δ)
i (f) = Infi(f). When δ = 1, we have Inf

(δ)
i (f) =

f̂2{i}. For intermediate δ, we can think of it as a interpolation. Observe that dictator function

DICTi has Inf
(δ)
i (χ{i}) = 1, therefore it is (1, 0)-quasirandom. For parity function χ[n] and positive

δ, we have Inf
(δ)
i (f) = (1 − δ)n−1f̂2[n] � 1 for all i ∈ [n]. The next fact states that even functions

far from being quasirandom can only have a small number of variables with large noisy influence.
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Fact 11. Let f : {−1, 1}n → {−1, 1}, and let J = {i ∈ [n] : Inf
(δ)
i (f) ≥ ε} be the set of coordinates

with large noisy influences. Then |J | ≤ 1/εδ.

Proof.

ε|J | ≤
∑
i∈J

Inf
(δ)
i (f) ≤

n∑
i=1

Inf
(δ)
i (f) =

∑
|S|≥1

|S|(1− δ)|S|−1f̂2S

It remains to prove that |S|(1 − δ)|S|−1 ≤ 1/δ for all S ⊆ [n]. Note that (1 − δ)|S|−1 ≤ (1 − δ)i−1
for all i ≤ |S|, therefore

|S|(1− δ)|S|−1 ≤
|S|∑
i=1

(1− δ)i−1 ≤
∑
i≥1

(1− δ)i−1 = 1/δ

Definition 12. (DICT vs QRAND) Let 0 ≤ s < c ≤ 1 and q ≥ 1. A q-good (c, s) dictator versus
quasirandom test is a non-adaptive randomized algorithm that makes q non-adaptive queries to a
function f : {−1, 1}n → {−1, 1} and output accepts or rejects. And the test satisfies

1. (completeness) If f = DICTi for some i, Pr[accepts] ≥ c− oε(1).

2. (soundness) If f is (ε, δ)-quasirandom, Pr[accepts] ≤ s+ oε(1).

Consider the BLR test, that is we uniformly random sample x, y ∈ {−1, 1}n, and accept f iff
f(x)f(y)f(xy) = 1. Here xy is computed pointwise. This is a linearity test and accepts any
dictator function with probability 1. However, it is not a good dictator versus quasirandom test
since it also accepts parity function with probability 1. [2] introduces a way to fix this. As we
have seen, BLR test can distinguish linear function while NAE test can distinguish dictator and
anti-dictator function, both of them use 3 non adaptive queries. Combine them together, we have
a 6 non adaptive queries test for dictator functions. Furthermore, we can randomly perform one of
the two tests, each with probability 1/2, and reduce the query complexity to 3 while only incurring
a constant factor in the rejection probability.

The test above is to identify dictator functions. We will look at tests that specially distinguishes
dictator functions and quasirandom functions below. We will consider Hastad’s 3-query 3XORδ

test, which is BLR test plus some tweaks.

Algorithm 1: Hastad’s 3-query 3XORδ test

1 Pick x, y ∈ {−1, 1}n uniformly and independently;
2 Pick z ∼ N1−δ(xy), that is zi is independently chosen to be xiyi with probability 1− δ/2 and
−xiyi with probability δ/2;

3 Query f on x, y and z;
4 Accept iff f(x)f(y)f(z) = 1;

Claim 13. (Hastad) Let δ = ε and f be balanced, the test above is (1, 1/2) dictator versus (ε, ε)-
quasirandom test.
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Proof. First, it is easy to check that dictator functions pass with probability 1− ε/2.

For soundness part, we have

Pr[3XORε accepts f ] =
1

2
+

1

2
Ex,y,z[f(x)f(y)f(z)]

=
1

2
+

1

2
Ex,y[f(x)f(y)(T1−εf)(xy)]

=
1

2
+

1

2
Eu[Ex[f(x)f(xu)](T1−εf)(u)]

=
1

2
+

1

2
Eu[(f ∗ f)(u)(T1−εf)(xy)]

=
1

2
+

1

2

∑
S

(1− ε)|S|f̂3S ≤
1

2
+

1

2
max
S
{(1− ε)|S|f̂S}

We then prove that (1 − ε)|S|f̂S ≤
√
ε for all S if f is (ε, ε)-quasirandom, from which the claim

follows. Suppose for contradiction not, then
√
ε < (1−ε)|S|f̂S . So ε < (1−ε)2|S|f̂2S ≤ (1−ε)|S|−1f̂2S ≤

Inf
(1−ε)
i (f) for all i ∈ S, which is contradiction when S 6= ∅. Therefore we conclude the claim.
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