
Analysis of Boolean Functions March 21, 2013

Lecture 6

Lecturer: Irit Dinur Scribe: Matthew Coudron

1 The Invariance Principle

This lecture will explore a useful generalization of the Central Limit Theorem of probability, which
is known as the the Invariance Principle. The Invariance Principle applies in the following setting:

Imagine that we have a function f : {−1, 1}n → R. Now imagine that we have i.i.d random
variables xi ∈ {−1, 1} and we compute f(x1, ..., xn). Now f(x1, ..., xn) itself may also be regarded
as a random variable. We know that f : {−1, 1}n → R can be expressed as a polynomial in the xi’s
f =

∑
S f̂S

∏
i∈S xi. Given this expression we can ask how much the random variable f(x1, ..., xn)

differs from f(y1, ..., yn) where the yi’s are a different set of independent random variables. For
example, the yi’s could be uniformly distributed on the interval [−1, 1].

It turns out that, just as in the Central Limit Theorem, Gaussian random variables play a central
role in the Invariance Principle. We will reserve the notation gi to refer to a sequence of independent
random variables with each gi distributed according to N (0, 1) (the Normal distribution with mean
0 and variance 1).

Roughly speaking, we are interested in the question: Does f ”notice” the difference between inputs
(x1, ..., xn) and (g1, ..., gn). More precisely, we would like to bound the difference between the
random variables f(x1, ..., xn) and f(g1, ..., gn). The canonical example of such a result is the
Central Limit Theorem

Theorem 1. The Lindeberg-Levy Central Limit Theorem

Suppose {X1, X2, ...} is a sequence of i.i.d. random variables with E[Xi] = µ and Var[Xi] = σ2 <∞.
Then as n → ∞, the random variables

√
n
(
X1+...+Xn

n − µ
)
converge in distribution to a normal

distribution, N (0, σ2).

In particular, if we define f(z1, ..., zn) ≡ 1
n(z1, ..., zn). Then, since Var[xi] = Var[gi] = 1, Theorem 1

implies that
√
nf(x1, ..., xn), and

√
nf(g1, ..., gn) both converge in distribution toN (0, 1) as n→∞.

Roughly speaking, this means that ∀t

lim
n→∞

Prob(
√
nf(x1, ..., xn) ≤ t) = lim

n→∞
Prob(

√
nf(g1, ..., gn) ≤ t)

In this sense the function f(z1, ..., zn) ≡ 1
n(z1, ..., zn) does not ”notice” the difference between inputs

(x1, ..., xn) and (g1, ..., gn), at least for large n.

However, for arbitrary functions f , it is clear that we will need to be more careful about what
question we ask. For example, note that with the simple function f(z1, ..., zn) ≡ z1 we have
that f(x1, ..., xn) has a Bernoulli distribution, and f(g1, ..., gn) has a Gaussian distribution, so any
reasonable norm will distinguish these two inputs. We revise our question as follows.
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Revised Question: Given f that has small influences, that is:

maxi∈[n] Infi(f) ≤ τ

then does f notice the difference between x1, ..., xn and g1, ..., gn?

In this case we have the following theorem:

Theorem 2. The Mossel-O’Donnell-Oleszkiewicz Invariance Principle

Let f be a degree d polynomial over R, f(z1, ..., zn) =
∑

S⊂[n] f̂S
∏
i∈S zi such that

∑
S f̂

2
S = 1.

Assume that ∀i Infi(f) ≡
∑

S:i∈S f̂
2
S ≤ τ . Then, for any smooth function φ : R→ R+ with bounded

fourth derivative (|φ(4)| ≤ B)

∣∣Ex∈{±1}n [φ(f(x))]− Eg∈N (0,1)n [φ(f(g))]
∣∣ < small(τ,

1

d
)

Later in the lecture we will discuss a proof of Theorem 2 where small(τ, 1d) = τd. Before we discuss
the proof, let us consider an application.

2 Dictatorship vs. τ-Quasirandom Tests

Here a τ -Quasirandom function is a boolean function with all influences smaller than τ just as in
2.

The boolean hypercube is used as a gadget in inapproximability redutions, where proving a com-
pleteness, soundness gap of (c,s) for the approximation boils down to devising a (c,s)-Dictatorship
vs. Quasirandom test (for boolean functions) which has the following properties:

Completeness: If f is a dictatorship then Pr[Test passes] ≥ c− o(1)

Soundness: If f is quasirandom then Pr[Test passes] ≤ s+ o(1).

Let’s consider a test which corresponds to inapproximability of ”Max-Cut” or Max-2LIN. This test
was proposed by Kindler, Khot, Mossel and O’Donnell, “KKMO”.

KKMO ”max-cut” test:

Fix 0 < ρ < 1 (we will also use a parameter δ defined by ρ = 1− 2δ.

1) Let x ∈ {±1}n be chosen uniformly at random.

2) Choose y ∈ {±1}n from the distribution Nρ(x) (the distribution which is ρ-correlated with x).
That is choose y such that for the ith bit of y (for all i), we have yi = xi with probability ρ, and
with probability 1− ρ yi is uniformly random.

3) Accept if f(x) = f(y).

KKMO Completeness: If f is a dictator function (on the ith coordinate say), then

Prob[Test passes] = Prob[xi = yi] = 1− δ
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KKMO Soundness: If f is quasi-random (meaning all influences are small), then

Prob[Test passes] = Prob[f(x) = f(y)] ≡ NSρ(f) ≤ NSρ(MAJ) =
arcCos(ρ)

π

Here we define NSρ(f) ≡ Prob[f(x) = f(y)]. We will now show how the Invariance Principle can
be used to calculate NSρ(MAJ) and obtain the final equality above.

A Calculation

Note that

MAJ(x1, ..., xn) = sgn(
∑
i∈[n]

xi) ≈ sgn(g)

and

MAJ(y1, ..., yn) = sgn(
∑
i∈[n]

yi) ≈ sgn(g′)

Where g and g′ are defined to be normal distributions distributed ”like” 1
n

∑
i∈[n] xi, and 1

n

∑
i∈[n] yi

respectively. In fact we can use g ∼ N (0, 1), and g′ ≡ ρg +
√

1− ρ2g′′ where g′′ ∼ N (0, 1 and g
and g′′ are independent. The Invariance Principle tells use that this g and g′ will be very close to
having the desired distributions.

With this definition of g an g′, straightforward calculus gives

NSρ(MAJ) ≈ Prob[sgn(g) = sgn(g′)] =
arcCos(ρ)

π

3 Proof of the Invariance Principle

We will now prove the Invariance Principle modulo a certain lemma (Lemma 3 below). We will
also discuss the key idea for proving that lemma and use it to obtain a similar (though weaker)
result.

Given f as in the statement of Theorem 2 we define

fi ≡ f(g1, ..., gi, xi+1, ..., xn)

Note that f0 = f(x1, ..., xn), and fn = f(g1, ..., gn). Imagine that we have a φ : R → R+ as in
Theorem 2.

Lemma 3.
∀i, |E[φ(fi−1)]− E[φ(fi)]| < (Infi)

2

3



Using Lemma 3 and the triangle inequality we can now prove Theorem 2.

Proof. Proof of Theorem 2

|E[φ(f(x1, ..., xn))]− E[φ(f(g1, ..., gn))]| = |E[φ(f0)]− E[φ(fn)]| =

∣∣∣∣∣
n−1∑
i=0

(E[φ(fi)]− E[φ(fi+1)])

∣∣∣∣∣
≤

n−1∑
i=0

|E[φ(fi)]− E[φ(fi+1)]| ≤
n∑
i=1

(Infi)
2 ≤ max

i
Infi

(
n∑
i=1

Infi

)
≤ τd

Here the first inequality follows by the triangle inequality, the second by Lemma 3, the third
inequality is straight forward, and the fourth follows from the fact that f is τ -Quasirandom and
degree d by assumption (

∑n
i=1 Infi ≤ d for degree-d f).

Clearly Lemma 3 plays a key role in the proof of the Invariance Principle. We will now give a proof
of a weaker version of Lemma 3 which nonetheless contains the key idea of the full proof.

Lemma 4.
∀i, |E[φ(fi−1)]− E[φ(fi)]| < O(B · 9d)(Infi)2

Here B is the bound on the fourth derivative of φ, and d is the degree of f , just as in Theorem 2.

Proof. Recall Taylor’s formula

φ(R+ ε) = φ(R) + εφ′(R) +
ε2

2!
φ(2)(R) +

ε3

3!
φ(3)(R) +

ε4

4!
φ(4)(η)

where η is some point in R.

Now, for a given i, we divide f(z1, ..., zn) up as a polynomial of zi, so f(z1, ..., zn) = R(z1, ..., zi−1, zi+1, ..., zn)+
ziS(z1, ..., zi−1, zi+1, ..., zn). Recall that

fi ≡ f(g1, ...gi, xi+1, ..., xn) = R(g1, ..., gi−1, xi+1, ..., xn) + giS(g1, ..., gi−1, xi+1, ..., xn)

fi−1 ≡ f(g1, ...gi, xi+1, ..., xn) = R(g1, ..., gi−1, xi+1, ..., xn) + xiS(g1, ..., gi−1, xi+1, ..., xn)

So defining random variables R ≡ R(g1, ..., gi−1, xi+1, ..., xn, and S ≡ S(g1, ..., gi−1, xi+1, ..., xn) we
have that

E[φ(fi−1)] = E[φ(R+ xiS)] = E [φ(R)] + E
[
xiSφ

′(R)
]

+ E
[

(xiS)2

2!
φ(2)(R)

]
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+E
[

(xiS)3

3!
φ(3)(R)

]
+ E

[
(xiS)4

4!
φ(4)(η)

]
= E [φ(R)] + E[xi]E

[
Sφ′(R)

]
+E[x2i ]E

[
S2

2!
φ(2)(R)

]
+ E[x3i ]E

[
S3

3!
φ(3)(R)

]
+ E[x4i ]E

[
S4

4!
φ(4)(η)

]
Where the second equality follows from the independence of xi and the other variables. Very
similarly,

E[φ(fi)] = E[φ(R+ giS)] = E [φ(R)] + E
[
giSφ

′(R)
]

+ E
[

(giS)2

2!
φ(2)(R)

]

+E
[

(giS)3

3!
φ(3)(R)

]
+ E

[
(giS)4

4!
φ(4)(η′)

]
= E [φ(R)] + E[gi]E

[
Sφ′(R)

]
+E[g2i ]E

[
S2

2!
φ(2)(R)

]
+ E[g3i ]E

[
S3

3!
φ(3)(R)

]
+ E[g4i ]E

[
S4

4!
φ(4)(η′)

]
Again the second equality follows from the independence of gi and the other variables. Now we
note that E[gi] = E[xi] = 0, E[g2i ] = E[x2i ] = 1, and E[g3i ] = E[x3i ] = 0. The first two equalities
follow by definition of gi. The third follows because the function y → y3 is odd, and both xi and
gi are have distributions which are symmetric about the origin (the are negative exactly as often
as they are positive...). It follows that

|E[φ(fi−1)]− E[φ(fi)]| =
∣∣∣∣E[x4i ]E

[
S4

4!
φ(4)(η)

]
− E[g4i ]E

[
S4

4!
φ(4)(η′)

]∣∣∣∣
≤
∣∣∣∣E[x4i ]E

[
S4

4!
φ(4)(η)

]∣∣∣∣+

∣∣∣∣E[g4i ]E
[
S4

4!
φ(4)(η′)

]∣∣∣∣ ≤ O(B)

∣∣∣∣E [S4

4!

]∣∣∣∣ = O(B)E
[
S4
]

Where the last inequality uses the fact that
∣∣φ(4)(η′)∣∣ , ∣∣φ(4)(η)

∣∣ ≤ B by assumption, and the fact
that E[x4i ] and E[g4i ] are both finite constant (not hard to calculate).

For the final step we will apply Hypercontractivity. Note that S = d
dxi
fi−1, so that E[S2] =

Infi(fi−1) =
∑

S:i∈S f̂
2
S . Clearly, the degree of S is at most d, so by Hypercontractivity we get

E
[
S4
]
≤
(
E
[
S2
])2

9d

Using the previous work gives

|E[φ(fi−1)]− E[φ(fi)]| ≤ O(B)E
[
S4
]
≤ O(B)

(
E
[
S2
])2

9d ≤ O(B · 9d)(Infi)
2

This is the desired result.

In fact, with a more careful use of Hypercontractivity, and the noisy hypercube function Tρ the
proof of Lemma 4 can be tightened to obtain Lemma 3.
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