
Dr. Uwe Röhm
School of Information Technologies

INFO2820 – Database Systems I (Adv)
Week 5: Recursive SQL and DATALOG
(Kifer/Bernstein/Lewis – Chapter 13.6; Ramakrishnan/Gehrke – Chapter 24; Ullman/Widom – Chapter 10.2)

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-2

Outline
!  Recursive Queries in SQL:1999
!  Hierarchical Queries in Oracle

Based on material from Kifer/Bernstein/Lewis (2006) “Database Systems”

Limitations of SQL
!  We have seen the previous weeks that standard SQL-92

cannot expressive recursion

!  So traversals of hierarchies or graphs is not possible in plain
SQL

!  Example:
 Flights (flightcode, frm, to, departs, arrives)

! On this database we can ask:
Are cities X and Y connected by a direct flight? When is it leaving?

! But we cannot answer (in a general way):
Between which pairs of cities (X,Y) can we travel by taking one or
more flights?

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-3

How do we do this in Datalog?
!  EDB:

 flights (ua450, syd, lax, 0630, 1845)
 flights (qf006, syd, sin, 0645, 1420)

 flights (ua451, lax, nyc, 2155, 0607)
 …

!  IDB:
 reaches (X, Y) :- flights (_, X, Y, _, _).

 reaches (X, Z) :- reaches (X,Y), flights(_,Y,Z,_,_).

Note: Arrival and departure times are not considered here – how

would you do this?

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-4

How translate this into SQL?
!  Given a relation Flights with attributes code and frm and to,

list the set of all cities that are directly or indirectly
connected by flight connections
! The direct connections are represented by the Flights relation itself

! The set Reaches2, computed by the following expression, contains
the immediate and once removed connections for all cities:

!  In general, Reachesi contains all flight-connections up to those that

are i-1 removed for all pairs of cities:

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-5

Reaches2 = πfrm, to (Flights to=frm Reaches1) ∪ Reaches1

Reaches1 = πfrm, to (Flights)

Reachesi = πfrm, to (Flights to=frm Reachesi-i) ∪ Reachesi-1

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-6

Limitations of SQL (con’t)
!  Question: We can compute σfrom=‘SYD’(Reachesi) to get all

cities reachable from Sydney up to those that are i-1 flights
away, but how can we be sure that there are not additional
connections that are i removed?

!  Answer: When you reach a value of i such that Reachesi =
Reachesi+1 you’ve got them all. This is referred to as a
stable state

!  Problem: There’s no way of doing this within relational
algebra, or SQL (this is not obvious and not easy to prove)

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-7

Recursion in SQL:1999
!  Since SQL:1999, recursion was added to SQL

! But only gradually available in implementations;
PostgreSQL supports the following only since two years (v 8.4)

!  Recursive queries can be formulated using a recursive view:

!  (a) is a non-recursive seed query – it cannot refer to the
view being defined
! Starts recursion off by introducing the base case – the set of direct

prerequisites

CREATE RECURSIVE VIEW Reaches (frm, to) AS
SELECT frm, to FROM Flights
UNION
SELECT R.frm, F.to
FROM Reaches R, Flights F
WHERE R.to = F.frm

(a)

(b)

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-8

CREATE RECURSIVE VIEW Reaches (frm, to) AS
SELECT frm, to FROM Flights
UNION
SELECT R.frm, F.to
FROM Reaches R, Flights F
WHERE R.to = F.frm

(b)

Recursion in SQL:1999 (cont’d)

!  (b) contains recursion – this subquery refers to the view being defined.
!  This is a declarative way of specifying the iterative process of calculating

successive levels of indirect prerequisites until a stable point is reached

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-9

Recursion using
Common Table Expressions (CTE)

!  SQL:1999 introduced common table expressions for queries
via the WITH construct to not require creating views

!  Can also be used to define recursive queries:
 WITH RECURSIVE Reaches(frm, to) AS
 (SELECT frm, to FROM Flights)
 UNION
 (SELECT R.frm, F.to
 FROM Reaches R, Flights F
 WHERE R.to=F.frm)
 SELECT *
 FROM Reaches

 WHERE frm = ‘SYD’

Example: How to compute #Hops?
WITH RECURSIVE Connection (frm, to, hops) AS

 (
 (SELECT F.frm, F.to, 1
 FROM Flights F)

 UNION
 (SELECT C.frm, F.to, C.hops+1
 FROM Connection C JOIN Flights F ON (C.to= F.frm))

)
 SELECT *
 FROM Connection
 WHERE …

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-10

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-11

Restrictions on the Use of Aggregation
!  Assume, you want to determine the shortest flight connection

between two given cities
 CREATE RECURSIVE VIEW ShortestConnection (frm, to, hops) AS
 ((SELECT F.frm, F.to, 1

 FROM Flights F)
 UNION
 (SELECT S.frm, F.to, MIN(S.hops)+1
 FROM ShortestConnection S, Flights F
 WHERE S.to= F.frm
 GROUP BY F.frm, S.to))

 Doesn’t work… For MIN(…) in the second SELECT clause, need whole relation
 SQL:1999 does not support this kind of recursive aggregation

 So how to do it?

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-12

Restrictions on the Use of Aggregation
!  Assume, you want to determine the longest flight connection

between two given cities.
!  Solution:

 WITH RECURSIVE Connection (frm, to, hops) AS
 (

 (SELECT F.frm, F.to, 1
 FROM Flights F)

 UNION
 (SELECT C.frm, F.to, C.hops+1
 FROM Connection C JOIN Flights F ON (C.to= F.frm))

)
 SELECT frm, to, MIN(hops)

 FROM Connection
GROUP BY frm, to

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-13

Another Recursive SQL Example
!  Example: find all employee-manager pairs, where the

employee reports to the manager directly or indirectly (that is
manager�s manager, manager�s manager�s manager, etc.)  
 

with recursive empl (employee_name, manager_name) as(
#select employee_name, manager_name 
from manager  

union 
#select manager.employee_name, empl.manager_name  

 from manager, empl  
 where manager.manager_name= empl.employee_name)
select* from empl  
#

!  This example view, empl, is called the transitive closure of the
manager relation

DBMS Comparison

DBMS Recursive SQL Syntax
PostgreSQL Yes, since v8.4

(both recursive views
and recursive CTE)

 CREATE RECURSIVE VIEW …  
or
 WITH RECURSIVE … SELECT …"

MySQL No
SQLite No
IBM DB2 Yes (since ca. v7.2)

(both recursive views
 and recursive CTE)

 CREATE RECURSIVE VIEW …  
or
 WITH RECURSIVE … SELECT …

SQL Server since SQL Server 2005
(recursive CTE)

 WITH RECURSIVE … SELECT …"

Sybase since SQL Anywhere v9
(recursive CTE)

 WITH RECURSIVE … SELECT …

Oracle proprietary solution SELECT … CONNECT BY [PRIOR] …

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-14

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-15

Recursive Queries in Oracle
!  Oracle is traditionally following a different approach,

supporting a form of �hierarchical queries� already quite
some time via its CONNECT BY clause
!  It does not support the SQL:1999 recursive views or a WITH clause

!  Hierarchical Query Clause:
 SELECT …
 FROM …
 WHERE …
START WITH root condition
CONNECT BY PRIOR childattr = parentattr

!  Example: (next page)

CONNECT-BY Example
 SELECT *
 FROM Flights

 START WITH frm = ‘SYD’
 CONNECT BY PRIOR to=frm

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-16

Further Oracle Specialties
!  There are some additional utility operators and functions for

hierarchical queries in Oracle

!  Pseudo-Columns(SELECT clause)
! LEVEL iteration counter
! CONNECT_BY_ISLEAF returns 1 if leaf, else 0
! CONNECT_BY_ISCYCLE returns 1 if current row has a child

 which is also its ancestor, else 0

!  SELECT Functions
! CONNECT_BY_ROOT col column col shall show tree root,

 not immediate parent
! SYS_CONNECT_BY_PATH(col, delimiter)

!  Ordering
! ORDER SIBLINGS BY determine order of sibling rows

!  cf. Oracle SQL reference manual, sections 3 and 9-3
INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-17

Oracle Example (from Manual)
 SELECT last_name "Employee",

 CONNECT_BY_ROOT last_name "Manager",
 LEVEL-1 "Pathlen”,
 SYS_CONNECT_BY_PATH(last_name, '/') "Path"

 FROM Employees
WHERE LEVEL > 1 AND department_id = 110
CONNECT BY PRIOR employee_id = manager_id;

 Employee Manager Pathlen Path
--------------- ------------ ---------- -----------------------------------
Higgins Kochhar 1 /Kochhar/Higgins
Gietz Kochhar 2 /Kochhar/Higgins/Gietz
Gietz Higgins 1 /Higgins/Gietz
Higgins King 2 /King/Kochhar/Higgins
Gietz King 3 /King/Kochhar/Higgins/Gietz

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-18

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-19

You should now be able to:
!  Understand the limitations of SQL wrt. recursive queries
!  Write a recursive SQL query

INFO2820 "Database Systems I (adv)" - 2013 (U. Röhm) 05adv-20

References
!  Kifer/Bernstein/Lewis (2nd edition – 2005)

!  Chapter 13.6
!  Ramakrishnan/Gehrke (3rd edition - the ‘Cow’ book – 2003)

!  Chapter 24
!  Ullman/Widom (3rd edition – 2008)

!  Chapter 10.2
One nice section about the recursive SQL clause in SQL:1999.
No oracle specialities

!  Oracle SQL Reference Manual

