
Dr. Uwe Röhm
School of Information Technologies

INFO2120 – INFO2820 – COMP5138
Database Systems
Week 6: Schema Normalization
(Kifer/Bernstein/Lewis – Chapter 6; Ramakrishnan/Gehrke – Chapter 19; Ullman/Widom – Chapter 3)

06-2

Outline
!  Motivation

!  Functional Dependencies
and Normal Forms
! 1st and 2nd normal form
! 3rd normal form
! BCNF

!  Table Decompositions

! Lossless-join and dependency preserving

!  Making it precise
Based on slides from Kifer/Bernstein/Lewis (2006) “Database Systems”

and from Ramakrishnan/Gehrke (2003) “Database Management Systems”,
and also including material from Röhm.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete)

Schema Design Process
!  The relational schema is best obtained by starting with a

conceptual design (eg. an E-R model)
! This can be converted to relational schema

!  However, the relational schema may arise in other ways
! eg. start from data in a spreadsheet

!  Typically gives one wide table!
! eg. choose tables by raw intuition

!  We should evaluate the schema, and improve it if necessary

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-3

U

Cbl

Cbl

Cbl

Au

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-4

Motivating Example
!  Example: Assume a direct data import from an Excel worksheet

!  There are �better� and �worse� relational schemas;
How can we judge the quality of relational schemas?

Olympic Dam

Blair Athol

Hunter Valley

Hunter Valley

Mt Pleasant

SA

QLD

NSW

NSW

WA

Uranium

Coal

Coal

Coal

Gold

BHP Billiton

Rio Tinto

Rio Tinto

Coal and Allied

NULL

mine state commodity
Mining Data Collection

company

www.bhpbilliton.com

www.riotinto.com

www.riotinto.com/index.asp

www.coalandallied.com.au

NULL

homepage

Redundant Information Incomplete Information

In
co

ns
is

te
nt

 In
fo

rm
at

io
n

abbrv

Evaluation of a DB Design
!  The most important requirement is adequacy:

that the design should allow representing all the important
facts about the design
! Make sure every important process can be done using the data in

the database, by joining tables as needed
! eg. “can we find out which driver made a particular delivery?”

!  If a design is adequate, then we seek to avoid redundancy
in the data
! and at a side effect, being able to insert/update/delete information

without the need for (extensive) use of null values
(Redundant data is where the same information is repeated in several

places in the db)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-5

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-6

Evils of Redundancy
!  Redundancy is at the root of several problems associated

with relational schemas:
! redundant storage
!  Insertion Anomaly:

Adding new rows forces user to create duplicate data or to use null
values.

! Deletion Anomaly:
Deleting rows may cause a loss of data that would be needed for
other future rows!

! Update Anomaly:
Changing data in a row forces changes to other rows because of
duplication.

!  Note: It is the anomalies with modifications that are the
serious concern, not the extra space used in storage

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-7

Anomalies Example

Question – Is this a relation? Answer – Yes: unique rows and no
multivalued attributes

Question – What’s the primary key? Answer – Composite: (Mine,Company)
(but then no NULL values allowed!)

Question – What happens with data modifications?

U

Cbl

Cbl

Cbl

Au

Olympic Dam

Blair Athol

Hunter Valley

Hunter Valley

Mt Pleasant

SA

QLD

NSW

NSW

WA

Uranium

Coal

Coal

Coal

Gold

BHP Billiton

Rio Tinto

Rio Tinto

Coal & Allied

NULL

mine state commodity
Mining Data Collection

company

www.bhpbilliton.com

www.riotinto.com

www.riotinto.com/index.asp

www.coalandallied.com.au

NULL

homepage abbrv

100

920

1430

1430

76

capacity

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-8

Anomalies in Previous Example

!  Insertion Anomaly:
!  If another company buys a stake into an existing mine, we have to re-

enter the �mine� information, causing duplication.
! What if we want to insert a mine which has no owner so far?

We either cannot do it at all (PK!) or we get many NULL values.

!  Deletion Anomaly:
!  If we delete all Gold mines, we loose the information that �Au� is the

chemical identifier for the commodity �Gold�!
! Or if composite PK, we cannot delete the last company for a mine!

!  Update Anomaly:
! For changing, e.g., the homepage of a company, we have to update

multiple tuples.

Why do these anomalies exist here?
Because there are two themes (entity types) placed into one relation.
This results in duplication and an unnecessary dependencies

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-9

Today�s Agenda
!  Motivation

!  Functional Dependencies
and Normal Forms
! 1st and 2nd normal form
! 3rd normal form
! BCNF

!  Table Decompositions
! Lossless-join and dependency preserving

!  Making it precise

Textbook, Chapter 19

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-10

Functional Dependency (FD)
!  Domain constraints, in particular functional dependencies,

can be used to identify schemas with such problems and to
suggest refinements.

!  Functional Dependency: The value of one attribute (the
determinant) determines the value of another attribute
!  Intuitively: �If two tuples of a relation R agree on values in X, then

they must also agree on the Y values.�

!  We write X → Y
! �X (functionally) determines Y�
! �Y is functionally dependent on X�

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-11

FD Example
!  FDs in motivating example:

! mine → state

! commodity → abbrv
! mine commodity → capacity

! company → homepage

!  Graphical notation:

!  Q: Which FD do not hold in this example?

mine state commodity company homepage abbrv

in general, a mine can produce several commodities.

capacity

We draw a line with arrowheads
going to the dependent column(s)
from the column(s) that are depended on

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-12

Some Remarks
!  A FD is an assertion about the schema of a relation not

about a particular instance.
!  It must be fulfilled by all allowable relations.

!  If we look at an instance, we cannot tell for sure that a FD
holds
! The most insight we can gain by looking at a �typical� instance are
�hints�…

! We can however check if the instance violates some FD

!  FDs must be identified based on the semantics of an
application.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-13

Keys and Functional Dependencies
!  If you know the functional dependencies, then you can check whether a

column (or set of columns) is a key for the relation
!  Does the column/set determine every column?
!  Can we have rows which are the same in the column/set, but different

somewhere?
!  There may be several different ways to choose a column/set of columns

as key for a relation
!  A column/set is called a candidate key if it’s values are necessarily different

among the rows
!  Choose one candidate key as the primary key

!  Used as identifier to capture relationships, and stored in other tables as
foreign key

!  A “superkey” is a column or set of columns that includes a candidate key
!  A candidate key, plus perhaps extra columns

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-14

Schema Normalization
!  FDs can be used to identify schemas with problems and to suggest

refinements.
!  Main Idea: Only allow FDs of form of key constraints.

!  Each non-key field is functionally dependent on every candidate key

!  Schema Normalization: The process of validating and improving a
logical design so that it satisfies certain constraints (Normal Forms) that
avoid unnecessary duplication of data
!  Idea: decompose relations with anomalies to produce smaller, well-

structured relations

!  Note: Using the Mapping Rules from week 3, we already get very close
to a fully normalised schema.
!  But to be sure we have to check…

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-15

Normal Forms
!  Database theory identifies

several normal forms for
relational schemas.

!  Each normal form is
characterized by a set of
restrictions.

!  For a relation to be in a normal
form it must satisfy the
restrictions associated with
that form.
! several NFs are used;

we focus on BCNF

Our goal is to use schemas
where every relation is in BCNF

[Hoffer/Prescott/McFadden, 2005]

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-16

First and Second Normal Form
!  Recall from third week:

A relation R is in first normal form (1NF) if the domains of
all attributes of R are atomic.

!  Domain is atomic if its elements are considered to be
indivisible units
! Examples of non-atomic domains:

!  multivalued attributes, composite attributes
! Non-atomic values complicate storage and encourage redundant

(repeated) storage of data

!  Second Normal Form (2NF) more of history value…
! 1NF + every non-key attribute is fully functionally dependent on the

primary key
! This means: No partial dependencies

(no FD X → Y where X is a strict subset of some key)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-17

Third Normal Form (3NF)
!  2NF + no transitive dependencies (functional

dependencies between non-primary-key attributes)
! No FD of the form X → Y , where X is not a key and Y is not at least

a subsets of a key

!  Note: this is called transitive, because the primary key is a
determinant for another attribute, which in turn is a
determinant for a third non-key attribute

!  Solution: non-key determinant with transitive dependencies
go into a new table; non-key determinant becomes primary
key in the new table and stays as foreign key in the old table

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-18

Normalisation Example

!  What the Key?

!  In which Normal Form is this relation?

!  Which anomalies could occur?

Mining relation (simplified):

mine state-code commodity abbrv capacity

Partial Dependency

Transitive Dependency

Full Dependency

state-name

Partial Dependency

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-19

Table Decomposition
!  Suppose that relation R contains attributes A1 ... An.

A decomposition of R consists of replacing R by two or more
relations such that:
! Each new relation scheme contains a subset of the attributes of R

(and no attributes that do not appear in R), and
! Every attribute of R appears as an attribute of one of the new

relations.
! All new relations differ.

!  Central Idea of Normalisation:
Decompose along a functional dependency.
!  If X -> Y violates a normal form, decompose R into R-Y and XY.

!  Example:
 R (A, B, C, D) with FDs: {A -> B D and B -> C}

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-20

Example Decomposition 1

mine state-code state-name

Transitive dependency

Full dependency

There is still a partial dependency in MineProduction

Remove 1. partial dependency (mine → state-code state-name)

commodity abbrv. capacity

partial dependency

mine

Mine

MineProduction

Full dependency

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-21

Example Decomposition 2

There is still a transitive dependency in Mine

Remove 2. partial dependency (commodity → abbrv):

transitive dependency

full dependency

commodity capacity

full dependency

mine

Mine

MineProduction

full dependency

Commodity commodity abbrv.

mine state-code state-name

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-22

Example: Final Decomposition

state-code state-name

Full Dependency Full Dependency

In which normal form are these relations?

Remove Transitive Dependencies:

mine state-code

capacity

Full Dependency

commodity mine

Commodity

Mine

MineProduction

State

Full Dependency

commodity abbrv.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-23

Boyce-Codd Normal Form (BCNF)

!  When a relation has more than one candidate key, even 3NF
relations may show anomalies.
! Hence we can decompose one step further

!  A relation R is in BCNF if the only non-trivial FDs that hold
over R are key constraints.
! Formal:

 ∀ non-trivial X → Y: X is a superkey

! All determinants are superkeys… the only nontrivial FDs are those in
which a key functionally determines one or more attributes.

! �All attributes describe the key,the whole key,and nothing but the key�

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-24

Example: Relation 3NF, but not BCNF

4.0

3.3

3.2

3.7

3.5

123

123

456

789

678

Physics

Music

Literature

Music

Physics

Hawking

Mahler

Mann

Bach

Hawking

SID Major Advisor
Student-Advisor

Maj_GPA

SID Major Advisor Maj_GPA

Relation in 3NF,
but not BCNF

Functional
Dependencies

Major is part of a key, hence no transitive dependency.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-25

Example: Decomposition into BCNF

SID Major Advisor Maj_GPA

Major Advisor SID Advisor Maj_GPA

split along the
second FD

Overall Design Process
! Consider a proposed schema
! Find out application domain properties expressed

as functional dependencies
! See whether every relation is in BCNF
! If not, use a bad FD to decompose one of the

relations; start with partial dependencies
! Replace the original relation by its decomposed tables

! Repeat the above, until you find that every relation
is in BCNF

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-26

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-27

Evaluating a Decomposition
!  A proposal to use decomposition on a schema should be

evaluated
!  Does it allow all the original information to be captured

properly?
!  Does it allow all the original application domain constraints

to be captured properly?
!  These issues are formalized as properties of a

decomposition
!  It must be lossless-join
! We want it to be dependency-preserving

!  If you do the decomposition as described based on a bad
FD, the decomposition is always lossless-join

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-28

Today�s Agenda
!  Motivation

!  Functional Dependencies
and Normal Forms
! 1st and 2nd normal form
! 3rd normal form
! BCNF

!  Table Decompositions
! Lossless-join and dependency preserving

!  Making it precise

Textbook, Chapter 19

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-29

Properties of Table Decomposition
!  A decomposition of R into S and T is lossless-join w.r.t. a

set of FDs F if, for every instance R that satisfies F:

 ∏S (R) "# ∏T (R) = R

!  I.e. the common attributes of S and T are a key of either S or T

!  Dependency-preserving: If R is decomposed into S and T,
then all FDs that were given to hold on R must also hold on
S and/or T.
! Dependency preserving does not imply lossless join
! And vice-versa!

!  It is essential that all decompositions used to deal with
redundancy be lossless!

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-30

Examples for Dependency-Preserving

!  The decomposition of
Orders(date, cid, pid, descr, price, weight, amount) with
F = {date cid pid → amount, pid → descr price weight } into
! Ordered(date,cid,pid,amount) with F1 = {date cid pid → amount}

and
! Product (pid,descr,price,weight) with F2 = {pid → descr price weight}

 is dependency-preserving.
!  The decomposition of Lectures (uos_code, time, room)

with F = {uos_code → room, time room → uos_code} into
! Rooms(uos_code, room) with F1={uos_code → room} and
! Times(uos_code, time) with F2 = {}

 is not dependency-preserving.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-31

Central Theorem
of Schema Refinement

!  Theorem:
A relation R with schema R and a set of FDs F.
Let X → Y a functional dependency with X ∩ Y = ∅.
Then is the decomposition of R into XY and R -Y a
lossless-join decomposition.

!  Every relation R with functional dependencies F can be
decomposed into 3NF relations, which is both lossless and
dependency-preserving.

!  For every relation R with set of FDs F exists a lossless-join
decomposition into BCNF relations.

How to Identify Candidate Keys?
!  An important step in schema normalization is the

identification of candidate keys
!  We can do so by:

!  Identifying all functional dependencies that hold on our data set
! Then reasoning over those FDs using a set of rules to on how we

can combine FDs to infer candidate keys
! Or alternatively, using these FDs top verify whether a given set of

attributes is a candidate key or not.

!  To be able to do so, we first need to formalise what a FD
actually is – and when it represents a key constraint

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-32

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-33

Formal Definition for FD
!  Given a relation with schema R, and two sets of attributes

X = {X1, …, Xm} ⊆ R and Y = {Y1, …, Yn} ⊆ R.
A functional dependency (FD) X → Y holds over relation
schema R if, for every allowable instance R of R :

 ∀ r, s ∈ R : r.X = s.X ⇒ r.Y = s.Y

!  A functional dependency X → Y is said to be trivial if Y ⊆ X

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-34

Formal Definition of a Candidate Key
!  Main Idea: Only allow FDs of form of a key constraint

! Each non-key field is functionally dependent on every candidate key

!  Definition: Superkey
Given a relation R with schema R and a set F of functional
dependencies. A set of attributes K ⊆ R is a superkey for R
if K → R ∈ F+

! where F+ is the attribute closure of F

!  Note that K → R does not require K to be minimal!
! K is a candidate key if no real subset of K has above property.
! A unique identifier. One of the candidate keys will become the PK

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-35

From FDs to Keys
!  Candidate keys are defined by functional dependencies
!  Consequently, FDs help us to identify candidate keys
!  Two Approaches:

! Approach 1: Attribute Closure
Given a set of FDs, we can verify whether a set of attributes is a
candidate key (‘verifying an educated guess’).
!  Tool: an algorithm called The Chase

! Approach 2: Closure of F
Given a set F of FDs, we can deduce all additional FDs that hold on
the schema. Candidate keys are then defined by some implied FDs
where the whole schema is functionally depending on the key (and
the key itself is minimal)
!  Tool: Armstrong Axioms

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-36

Approach 1: The Chase
Computing the Closure of Attributes

!  Determining the Close of Attributes (X+) with The Chase:
Starting with the given set of attributes, one repeatedly
expands the set by adding the right side of an FD as soon
as the left side is present:

1.  Initialise result with the given set of attributes: X={A1, …, An}

2.  Repeatedly search for some FD A1 A2 … Am → C
such that all A1, …, Am are already in the set of attributes result, but
C is not.
Add C to the set result.

3.  Repeat step 2 until no more attributes can be added to result
4.  The set result is the correct value of X+

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-37

From the Attribute Closure to Keys
!  The set of Functional Dependencies can be used to find

candidate keys.
! Rationale: K → R holds iff K+ = R

!  Hence to find all candidate keys for a relation R:
! Look at each set of attributes K
! Calculate the attribute closure K+
!  If K+ contains all columns, then K is a superkey (a superset of a

candidate key)
! The superkeys which are minimal are the candidate keys
! Pick one candidate key to be the primary key

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-38

Example
!  R = (A, B, C, G, H, I)
!  F = {A → B

 A → C
 CG → H
 CG → I
 B → H}

!  Check (AG)+
1.  result = AG
2.  result = ABG (A → B and A ⊆ AG)
2. result = ABCG (A → C and A ⊆ ABG)
3. result = ABCGH (CG → H and CG ⊆ ABCG)
4. result = ABCGHI (CG → I and CG ⊆ ABCGH)

!  Is (AG) a candidate key?
1.  Is (AG) a super key? YES!

1.  Does AG → R? ie Is (AG)+ = R

2.  Is any subset of (AG) a superkey? NO!
1.  Does A → R? ie Is (A)+ = R
2.  Does G → R? ie Is (G)+ = R

Don’t forget to test
for minimality!

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-39

Exercise
!  Suppose R(A,B,C,D,E) with FDs given as

!  F = {A → B, B → C, C D → E }
!  What is (AD)+ ?

!  What is A+?
!  What is D+?

!  Is (AD) a candidate key for R?
!  Can you find any other candidate keys?

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-40

Approach 2: Deducing more FDs
!  Given some FDs, we can usually infer additional FDs:

! Example:
 uos_code → cpoints, cpoints → wload implies uos_code → wload

!  A FD f is implied by a set of FDs F if f holds whenever all
FDs in F hold.

!  F+ : closure of F is the set of all FDs that are implied by F

!  Armstrong�s Axioms (X, Y, Z are sets of attributes):
1. Reflexivity rule: If X ⊆ Y, then Y → X
2. Augmentation rule: If X → Y, then XZ → YZ for any Z
3. Transitivity rule: If X → Y and Y → Z, then X → Z

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-41

Example
!  R = (A, B, C, G, H, I)

F = { A → B
 A → C
 CG → H
 CG → I
 B → H }

!  some members of F+
! A → H

!  by transitivity from A → B and B → H
! AG → I

!  by augmenting A → C with G, to get AG → CG
and then transitivity with CG → I

! CG → HI
!  from CG → H and CG → I : this is called the “union rule”; it follows by

•  Augmentation of CG → I to infer CG → CGI, augmentation of
CG → H to infer CGI → HI, and then transitivity

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-42

Reasoning about FDs
!  Armstrong’s Axioms are

!  Sound: they generate only FDs in F+ when applied to a set F of FDs
!  Complete: repeated application of these rules will generate all FDs in the

closure F+

!  But computing F+ is not efficient
!  A couple of additional rules (that follow from Armstrong’s Axioms.):

4.  Union rule: If X → Y and X → Z, then X → YZ
5.  Decomposition rule: If X → YZ, then X → Y and X → Z
6.  Pseudotransitivity rule: If X → Y and SY → Z, then XS → Z

!  Example: Orders (date,cid,pid,descr,price,weight,amount) and FDs
{date cid pid → amount, pid → descr price weight }.

!  It follows: date, cid, pid → pid (reflexivity rule)
 descr, price, weight → descr(reflexivity rule)
 pid → descr (decomposition rule)
 date, cid, pid → descr (transitivity rule)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-43

Summary

!  Functional dependencies (FD): tool to detect redundancies in schemas
!  Relations can be in different normal forms - the higher, the less

redundancies. But there is a trade-off (see above).
!  If a relation is in BCNF, it is free of redundancies that can be detected using

FDs. Thus, trying to decompose into BCNF is a good heuristic.
!  If a relation is not in BCNF, we can try to decompose it into a collection

of BCNF relations.
!  Decompositions can be loss-less and/or dependency-preserving
!  Must consider whether all FDs are preserved. If a dependency-preserving

decomposition into BCNF is not possible (or unsuitable, given typical
queries), should consider decomposition into 3NF.

1NF 2NF 3NF BCNF 4NF 5NF

less restrictions less redundancy

achievable loss-less
and dependency-preserving

achievable only with some loss
such as non dependency-preserving

. . .

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (Röhm/Fekete) 06-44

References
!  Kifer/Bernstein/Lewis (2nd edition)

!  Chapter 6
!  Ramakrishnan/Gehrke (3rd edition - the ‘Cow’ book)

!  Chapter 19
!  Ullmann/Widom (3rd edition of 1st Course in Database Systems)

!  Chapter 3

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 06-45

Next Lecture
!  Integrity and Security

! User Authorization, GRANT and REVOKE commands
! Static Integrity Constraints, Assertions
! Triggers

!  Readings:
! Kifer/Bernstein/Lewis book, Sections 3.2.2-3.3 and Chapter 7
! or alternatively (if you prefer those books):

!  Ramakrishnan/Gehrke (Cow book),
 Sections 3.2-3.3 and Sections 5.7-5.9

!  Ullman/Widom, Chapter 7

