INFO2120 - INFO2820 - COMP5138

Database Systems

Week 7: Database Security and Integrity
(Kifer/Bernstein/Lewis — Chapter 3.2-3.3; Ramakrishnan/Gehrke — Chapter 5.7-5.9; Ullman/Widom — Chapter 7)

Dr. Uwe R6hm
School of Information Technologies

P\

<

f THE UNIVERSITY OF
SYDNEY

Outline

B Database Security

B Static Integrity Constraints
» Domain Constraints
» Key / Referential Constraints
» Semantic Integrity Constraints

COMMONWEALTH OF AUSTRALIA

B Dynamic Integrity Constraints
WARNING
> Trlggers This material has been reproduced and communicated to

you by or on behalf of the University of Sydney pursuant
to Part VB of the Copyright Act 1968 (the Act)

The material in this communication may be subject to
copyright under the Act. Any further reproduction or
communication of this material by you may be the subject
of copyright protection under the Act

Do not remove this notice

Based on slides from Kifer/Bernstein/Lewis (2006) “Database Systems”
and from Ramakrishnan/Gehrke (2003) “Database Management Systems”,
and also including material from Fekete and Roéhm.
INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Rohm) 07-2

Small Snapshot of Recent IT News

smh.com.au
The Sydney Morning ZHerald

TechCrunch
Technology

, , ~_ Hacker Gains Access To WordPress.com Servers,
Psﬁg hﬁl:sstralla customer details stolen in maj Site Source Code Exposed

April 7, 2011 - 10:22AM Alexia Tsotsis
i . Apr 13, 2011

The personal details of thousands of Dell Australia custo
Australians could unknowingly be affected following @ mz worderess.com has revealed that someone has gained root-access (“low-level,” as in deep) to several

.) of its servers this morning and that VIP customers’ source code was accessible. WordPress.com VIP
Dell Australia sent an email message to customers yeste . ..ccamare aro 2l an “rade red” and in the process of changing all the passwords/API keys they've left in
commun Major Airline Reveals Passenger

Information

unicate today: Automattic had a low-level (root) break-in to several of our
Iy anything on those servers could have been revealed.

This exp

Something we talk about a lot at Tinfoil is the exislence of two mindsets when engineering Iy reviewing logs and records about the break-in to determine the extent of

software: building and breaking. Thinkin: e erent mindset than

building working software. You have to 0 |ABCNews
head. Whether this validation is personal,

someone like us), iLis crucial to making sur .
fate (or malicious users) conspire against ilU K Ioses tax detal Is for 25m people

In this case, it was a late night and | was tn .
get a reasonable price. | had several tabs cPOS[ed 3 hours 21 minutes ago

offfor a few hours. | finally made & decisiopargonal details of 25 million people have been mislaid by Britain's tax authority, finance minister Alistair Darling said,
Airlines another major blow to a government reeling from the Northern Rock banking debacle.

I picked & seat and was presented with 2 6The Opposition Conservatives accused the government of laying half the population of Britain open to identity fraud and ridiculec
these days). United had recently updated icompetence over running the country.

saved passengers. | clicked the dropdown

Paul Gray, head of Britain's Revenue and Customs, has already resigned over what Mr Darling described as a "serious failure" ¢
authority, which is already embroiled in two other major security breaches this year.

none of which were mine. | looked down th
name, and realized what | was likely lookin

INF(‘ ‘vl’rcvderlnionlaﬁon hm) 07-3
¥

“Houston — we have a problem...”

B CWE’s Top 25 Most Dangerous Software Errors

This is a brief listing of the Top 25 items, using the general ranking.

NOTE: 16 other weaknesses were considered for inclusion in the Top 25, but their general scores were not high enough.
They are listed in a separate "On the Cusp" page.

Rank|Score[1D Name

— [1] |[93.8]CWE-SB Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
[2] |83.3 ‘CWE-78 Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection')
[3]1 |[79.0 HEWE-IZO Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

[4] |[77.7 |CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[5] |[76.9 |CWE-306 |Missing Authentication for Critical Function

—— ([6] |76.8 |CWE-862 [Missing Authorization

—_— [7] |[75.0 ‘CWE-798 Use of Hard-coded Credentials

—_— [8] |[75.0 ‘CWE-311 Missing Encryption of Sensitive Data

[9] |[74.0 ||CWE-434|Unrestricted Upload of File with Dangerous Type

[10] [73.8 |CWE-807|Reliance on Untrusted Inputs in a Security Decision

[11] [73.1 |CWE-250|Execution with Unnecessary Privileges

[12] |70.1 ‘CWE-BSZ Cross-Site Request Forgery (CSRF)

[13] |69.3 ‘CWE-ZZ Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

[14] |68.5 |CWE-494|Download of Code Without Integrity Check

_— [15] [67.8 |CWE-863 |Incorrect Authorization

[16] [66.0 ||CWE-829|Inclusion of Functionality from Untrusted Control Sphere

[17] |65.5 ‘CWE-732 Incorrect Permission Assignment for Critical Resource

[18] |64.6 ‘CWE-G?S Use of Potentially Dangerous Function

[19] [64.1 |CWE-327|Use of a Broken or Risky Cryptographic Algorithm

[20] [62.4 |CWE-131|Incorrect Calculation of Buffer Size

[21] [61.5 |CWE-307|Improper Restriction of Excessive Authentication Attempts

[22] |61.1 ‘CWE-GOl URL Redirection to Untrusted Site (‘'Open Redirect’)

[23] |61.0 ‘CWE-134 Uncontrolled Format String

[24] [60.3 |CWE-190]Integer Overflow or Wraparound

[25] [59.9 [cwe-759]use of a One-way Hash without a Salt

—> [39] CWE-209: Information Exposure Through an Error Message
ofs INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) [Source: http://cwe.mitre.org/top25/] 07-4

o

Database Security

B Databases might contain sensitive information

B Need mechanisms to guarantee:
» Secrecy: Users should not be able to see things
they are not supposed to.
= E.g., A student can’t see other students’ grades.

> Integrity: Users should not be able to modify things
they are not supposed to.
= E.g., Only instructors can assign grades.
» Availability: Users should be able to see and modify things they are
allowed to.

B SQL:92 provides tools for specifying an authorization policy
but does not support authentication (vendor specific)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-5

Database Access Control
B Two main security mechanisms at the DBMS level:

B Mandatory access control (Authentification)

» Every connection must login with login and password
» CREATE USER or CREATE LOGIN commands etc.

B Discretionary access control (Authorization)

» Based on the concept of access rights or privileges for objects
(tables and views), and mechanisms for giving users privileges (and
revoking privileges).

» Creator of a table or a view automatically gets all privileges on it.

= DMBS keeps track of who subsequently gains and loses privileges, and

ensures that only requests from users who have the necessary
privileges (at the time the request is issued) are allowed.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-6

Access Control in SQL

GRANT privilege list
ON table (any schema object)
TO user list

[WITH GRANT OPTION]

M privileges: SELECT, INSERT, DELETE, UPDATE, REFERENCES

B Examples:
GRANT UPDATE (grade) ON Enrolled TO uroehm

» Only the grade column can be updated by user ‘uroehm’

GRANT SELECT ON Enrolled TO jpoon

» Individual columns cannot be specified for SELECT access (SQL standard) —

all columns of Enrolled can be read (including any added later via ALTER
TABLE command).

» SELECT access control to individual columns can be simulated through views

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-7

Grant and Revoke Privileges

M [f a user has a privilege with the GRANT OPTION, can pass privilege on
to other users (with or without passing on the GRANT OPTION).

B Only owner can execute CREATE, ALTER, and DROP.
B Examples:
GRANT INSERT,SELECT ON Student TO Uwe
» Uwe can query students or insert tuples into it.
GRANT DELETE ON Students TO Jon WITH GRANT OPTION
» Jon can delete tuples, and also authorize others to do so.

GRANT UPDATE (title) ON UnitofStudy TO Dustin

» Dustin can update (only) the title field of Courses tuples.
GRANT SELECT ON FemaleStudents TO Guppy, Yuppy
This is a view on Students - what can the ‘uppy’s now see?

B REVOKE: When a privilege is revoked from X, it is also revoked from all

users who got it solely from X.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-8

Views and Security

B Views can be used to present necessary information (or a
summary), while hiding details in underlying relation(s).

» Given view
CREATE VIEW EnrolledStuds AS SELECT sid,uos_code FROM Enrolled

we can find students who have enrolled in courses, but not the
grades they have achieved.
B Creator of view has a privilege on the view if (s)he has the
privilege on all underlying tables.

» Granting a privilege on a view does not imply granting any privileges
on the underlying relations.

» If creator of base tables revokes SELECT right, view is automatically
dropped.

B Together with GRANT/REVOKE commands, views are a
very powerful access control tool.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-9

Example: GRANTs and VIEWs

B User A: CREATE TABLE Student (sid INT, ...);
GRANT SELECT ON Student TO B WITH GRANT OPTION;
/* note: without GRANT OPTION, B cannot pass SELECT privilege on its view on to C */

B User B: CREATE VIEW MyStud AS
SELECT sid FROM A.Student;
GRANT SELECT ON MyStud TO C;

m UserC: SELECT * FROM B.MyStud; -- works
SELECT * FROM A.Student; -- does not work

m User A: REVOKE SELECT ON Student FROM B;
-- what happens now?

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-10

Authorization Mode REFERENCES

M Foreign key constraint enforces relationships between tables;
those could be exploited to
» control access: can prevent deletion of rows
GREATE TABLE DontDismissMe (

id INTEGER,
FOREIGN KEY (id) REFERENCES Student
ON DELETE NO ACTION)
» reveal information: successful insertion into DontDissmissMe means
a row with a foreign key value exists in Student

» Example:
INSERT INTO DontDismissMe VALUES (11111111);

B REFERENCES access mode allows to prevent this by only
allowing authorized users to use foreign keys to a table
GRANT REFERENCES ON Student TO flexsis

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-11

Role-based Authorization

B In SQL-92, privileges are actually assigned to authorisation
ids, which can denote a single user or a group of users.
B In SQL:1999 (and in many current systems), privileges are

assigned to roles.
» Roles can then be granted to users and to other roles.

» Reflects how real organisations work.
» Much more flexible and less error-prone, especially on large schemas

=> use role-based authorization whenever possible

B Example:
CREATE ROLE manager
GRANT select,insert ON students TO manager

GRANT manager TO shari

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-12

Limitations of SQL Authorization

B SQL does not support authorization at a tuple level
» eg. we cannot restrict students to see only (the tuples storing) their own grades
» can be simulated to a certain degree using Views, but VERY cumbersome

® With the growth in Web access to databases, database accesses come
primarily from application servers.
» End users don't have database user ids, they are all mapped to the same
database user id
B All end-users of an application (such as a web application) may be
mapped to a single database user

B The task of authorisation in above cases falls on the application program,
with no support from SQL

» Benefit: fine grained authorisations, such as to individual tuples, can be
implemented by the application.
» Drawback: Authorisation must be done in application code, and may be
dispersed all over an application
» Checking for absence of authorisation loopholes becomes very difficult since it
requires reading large amounts of application code
INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-13

Data Minimalism

M The best protection against unauthorized access to data in
your database is to consider very carefully what you store in
the first place!

B A database should only store information that is absolutely
necessary for the operation of your application.

B Some data is even not allowed to be stored
» For example: Sensitive authentication data such as the security code
of a credit card
= Cf. https://www.pcisecuritystandards.org/documents/pa-dss_v2.pdf

» In Australia, the Tax File Number or the Medicare numbers is
specifically protected from being used outside government

» Any personal health information

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-14

Data Privacy

B Some information is specifically protected and requires
specific standards and auditing procedures
» especially for governmental organisations or large businesses

B In Australia, the Privacy Act 1988 (Cth) (the Privacy Act)
governs the protection rules regarding personal information

» Personal information: information where an individual is reasonably
identifiable, i.e. information that identifies/could identify an individual

» regulates e.g. what and how to collect, disclosure rules, requirement
to ensure information quality, when to delete

m cf. National Privacy Principles (NPP)

» http://www.privacy.gov.au/law/act/npp

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-15

Outline

B Database Security

B Static Integrity Constraints
» Domain Constraints
» Key / Referential Constraints
» Semantic Integrity Constraints

COMMONWEALTH OF AUSTRALIA

B Dynamic Integrity Constraints

WARNING
» Trlggers This material has been reproduced and communicated to
you by or on behalf of the University of Sydney pursuant
to Part VB of the Copyright Act 1968 (the Act)

ial in this communication may be subject to
under the Act. Any further reproduction or
cation of this material by you may be the subject
ht protection under the Act

Do not remove this notice

Based on slides from Kifer/Bernstein/Lewis (2006) “Database Systems”
and from Ramakrishnan/Gehrke (2003) “Database Management Systems”,

and also including material from Fekete and R6hm.
INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-16

Semantic Integrity Constraints

B Obijective:
» capture semantics of the miniworld in the database

» ensuring that authorized changes to the database do not result in a
loss of data consistency

» guard against accidental damage to the database (avoid data entry
errors)
B Advantages of a centralized, automatic mechanism to
ensures semantic integrity constraints:
» More effective integrity control
» Stored data is more faithful to real-world meaning
» Easier application development, better maintainability

@ Note: DBMS allow to capture more ICs than, e.g., ERM

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-17

Examples of Integrity Constraints

B Each student ID must be unique.

® For every student, a name must be given.

B The only possible grades are either ‘F’, ‘P’, ‘C’, ‘D’, or ‘H’.

B Valid lecturer titles are ‘Lecturer’, ‘Senior Lecturer’ or
‘Professor’

B Students can only enroll in actually offered unit of studies.

B Students must be assest by the lecturer who actually gave
the course and the mark they achieve is between 0 and 100.

B The sum of all marks in a course cannot be higher than 100.
B A lecturer can only be promoted, but never degraded.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-18

Integrity Constraint (IC)

B Integrity Constraint (IC):
condition that must be true for every instance of a database
> A legal instance of a relation is one that satisfies all specified ICs
= DBMS should never allow illegal instances....
M |Cs are specified in the database schema
» The database designer is responsible to ensure that the integrity
constraints are not contradicting each other!
M |ICs are checked when the database is modified
» With one degree of freedom:
= After a SQL statement, or at the end of a transaction?
B Possible reactions if an IC is violated:
» Undoing of a database operation
» Abort of the transaction
» Execution of “maintenance” operations to make db legal again

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-19

Types of Integrity Constraints

B Static Integrity Constraints
describe conditions that every legal instance of a database
must satisfy
» Inserts / deletes / updates that violate ICs are disallowed

» Three kinds:

® Domain Constraints
» Key Constraints & Referential Integrity
® Semantic Integrity Constraints; Assertions

B Dynamic Integrity Constraints
are predicates on database state changes
» Triggers

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-20

Domain Constraints

B The most elementary form of an integrity constraint:

B Fields must be of right data domain
» always enforced for values inserted in the database
» Also: queries are tested to ensure that the comparisons make sense.

B SQL DDL allows domains of attributes to be restricted in the
create table definition with the following clauses:

» DEFAULT default-value
default value for an attribute if its value is omitted in an insert stmnt.

» NOT NULL
attribute is not allowed to become NULL

» NULL (note: not part of the SQL standard)
the values for an attribute may be NULL (which is the default)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-21

Example of Domain Constraints

CREATE TABLE Student
(

sid INTEGER PRIMARY KEY,
name VARCHAR (20) NOT NULL,
semester INTEGER DEFAULT 1,
birthday DATE NULL,

country VARCHAR (20)
) ;

Semantic:
sid is primary key of Student
name must not be NULL
semester will be 1 if not specified by an insert
all other attributes can be NULL (birthday and country)

Example:
INSERT INTO Student (sid, name) VALUES (123,’'Pete');

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-22

User-Defined Domains

B New domains can be created from existing data domains
CREATE DOMAIN domain-name sqgl-data-type

B Example: _
. . cannot assign or compare
create domain Dollars numeric(12,2) a value of Dollars

create domain Pounds numeric(12,2) to a value of Pounds.

B Domains can be further restricted,e.g. with the check clause
» E.g.: create domain Grade char check(value in (‘F’;’P’,’C’’D’,’H’))

M User-defined types with SQL:1999:
CREATE [DISTINCT] TYPE type-name AS sgl-base-type

® Will most probably replace the create domain mechanism
» CREATE DOMAIN: Currently only Sybase and PostgreSQL

» CREATE DISTINCT TYPE: so far, only supported by IBM DB2
(SQL Server has an add_type() procedure)

wfw INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-23

Primary Key Constraints

B Recall definition from week 2:
> A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all key attributes, and
2. This is not true for any subset of the key.

® In SQL, we specify a primary key constraint using the
PRIMARY KEY clause:

@ CREATE TABLE Student
(

Student sid INTEGER PRIMARY KEY,
@ name VARCHAR (20)

)

B A primary key is automatically unique and NOT NULL
B Complex keys: separate clause at end of create table

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-24

Foreign Keys & Referential Integrity
m Foreignkey: Cf- Week 3, slides 03-26 & 03-27

> Set of attributes in a relation that is used to ‘refer’ to a tuple in a
parent relation.

» Must refer to a candidate key of the parent relation
» Like a “logical pointer’

B Referential Integrity: for each tuple in the referring relation
whose foreign key value is o, there must be a tuple in the
referred relation whose primary key value is also o

» e.g. sid is a foreign key referring to Student:
Enrolled(sid: integer, ucode: string, semester: string)
» If all foreign key constraints are enforced, referential integrity is
achieved, i.e., no dangling references

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-25

Foreign Keys in SQL

B Only students listed in the Students relation should be
allowed to enroll for courses.

CREATE TABLE Enrolled

(sid CHAR(10), wuos CHAR(8), grade CHAR(2),
PRIMARY KEY (sid,uos),
FOREIGN KEY (sid) REFERENCES Student)

Student Enrolled
sid name age country sid uos grade
53666 [Jones 19 AUS ‘< 53666 | COMP5138[CR
53650 [Smith 21 AUS 53666 [INFO4990 CR
54541 [Ha Tschi 20 CHN \ 53650 | COMP5138 P
54672 |[Loman 20 AUS 53666 [SOFT4200 D
54221 [INFO4990 F

??? Dangling reference

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-26

Enforcing Referential Integrity in SQL

B SQL/92 and SQL:1999
support all 4 options on

deletes and updates. CREATE TABLE Enrolled
» Defaultis NO ACTION (sid CHAR(10),
(delete/update is rejected) uos CHAR(8),
» CASCADE (also delete all grade CHAR(2),
tuples that refer to deleted PRIMARY KEY (sid,uos),

FOREIGN KEY (sid)
REFERENCES Student
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

tuple)

» SET NULL / SET DEFAULT
(sets foreign key value of
referencing tuple)

» Cf. Example in Tutorial

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-27

Semantic Integrity Constraints

M Integrity constraints on more than one attribute?

B Also, a name for integrity constraint would be very useful for
administration / maintenance...

m SQL:
CONSTRAINT name CHECK (semantic-condition)

B One can use subqueries to express constraint (SQL-92
standard)

» Note: subqueries in CHECKs are NOT SUPPORTED by either
PostgreSQL or Oracle (Sybase is one example that does this)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-28

Semantic Constraints Example

CREATE TABLE Assessment
(
sid INTEGER REFERENCES Student,
uos VARCHAR (8) REFERENCES UnitOfStudy,
empid INTEGER REFERENCES Lecturer,
mark INTEGER,
CONSTRAINT maxMarks CHECK (mark between 0 and 100),
CONSTRAINT rightLecturer
CHECK (empid = (SELECT u.lecturer
FROM UnitOfStudy u
WHERE u.uos_code=uos))

Note: The second constraint with a subquery is not supported by our doms.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-29

SQL: Naming Integrity Constraints

B The CONSTRAINT clause can be used to name all kinds of
integrity constraints

B Example:
CREATE TABLE Enrolled
(
sid INTEGER,
uos VARCHAR(8) ,
grade CHAR(2) ,
CONSTRAINT FK sid enrolled FOREIGN KEY (sid)
REFERENCES Student
ON DELETE CASCADE,
CONSTRAINT FK cid enrolled FOREIGN KEY (uos)
REFERENCES UnitOfStudy
ON DELETE CASCADE,
CONSTRAINT CK _grade enrolled CHECK(grade in (‘F’,.)),
CONSTRAINT PK enrolled PRIMARY KEY (sid,uos)
) ;

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-30

Example: Deferring Constraints

CREATE TABLE UnitOfStudy
(

uos_code VARCHAR (8) ,
title VARCHAR (220) ,
lecturer INTEGER,

credit _points INTEGER,
CONSTRAINT UnitOfStudy_PK PRIMARY KEY (uos_code),

CONSTRAINT UnitOfStudy FK FOREIGN KEY (lecturer)
REFERENCES Lecturer DEFERABBLE INITIALLY DEFERRED

) s

B Allows to insert a new course referencing a lecturer which is not present
at that time, but who will be added later in the same transaction.

B Behaviour can be dynamically changed within a transaction
with the SQL statement

SET CONSTRAINT UnitOfStudy_FK IMMEDIATE;

wfw INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-31

Deferring Constraint Checking

B Any constraint - domain, key, foreign-key, semantic - may
be declared:

» NOT DEFERRABLE

The default. It means that every time a database modification occurs,
the constraint is checked immediately afterwards.

» DEFERRABLE
Gives the option to wait until a transaction is complete before
checking the constraint.
= INITIALLY DEFERRED wait until transaction end,
but allow to dynamically change later
= INITIALLY IMMEDIATE check immediate,
but allow to dynamically change later

=

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-32

ALTER TABLE statement

B [ntegrity constraints can be added, modified (only domain constraints),
and removed from an existing schema using ALTER TABLE statements

ALTER TABLE table-name constraint-modification

where constraint-modification is one of:

ADD CONSTRAINT constraint-name new-constraint
DROP CONSTRAINT constraint-name
RENAME CONSTRAINT old-name TO new-name
ALTER COLUMN attribute-name domain-constraint
(Oracle Syntax for last one: MODIFY attribute-name domain-constraint)
B Example (PostgreSQL syntax):
ALTER TABLE Enrolled ALTER COLUMN grade SET NOT NULL;

B What happens if the existing data in a table does not fulfil a newly added
constraint?

Then constraint gets not created!

€.g. "ORA-02293: cannot validate (DAMAGECHECK) - check constraint violated"

By’ INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-33

Assertions

B The integrity constraints seen so far are associated with a single table
» Plus: they are required to hold only if the associated table is nonempty!

B Need for a more general integrity constraints
» E.g. integrity constraints over several tables
» Always checked, independent if one table is empty

B Assertion: a predicate expressing a condition that we wish the
database always to satisfy.

B SQL-92 syntax:
create assertion <assertion-name> check (<condition>)

B Assertions are schema obijects (like tables or views)

B When an assertion is made, the system tests it for validity, and tests it
again on every update that may violate it

» This testing may introduce a significant amount of overhead; hence
assertions should be used with great care.

=

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-34

Assertion Example

B The number of boats plus the number of sailors should be
less than 100.

CREATE TABLE Sailors (
sid INTEGER
sname CHAR (10)
rating INTEGER
PRIMARY KEY (sid)
CHECK (rating >=1 AND rating <=10)
CHECK ((SELECT count (s.sid) FROM Sailors s
+ (SELECT count (b.bid) FROM boats b) < 100))

CREATE ASSERTION smallclub CHECK

((SELECT COUNT(s.sid) FROM Sailors s)
+ (SELECT COUNT (b.bid) FROM Boats b) < 100))

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Rohm) 07-35

Assertion Exampile I

M Asserting V X : P(X) is achieved in a round-about
fashion using not exists X such that not P(X)

B Example: For all students, the sum of all marks for a course
must be less or equal than 100.

CREATE ASSERTION mark-constraint CHECK
(

not exists (select sid
from Assessment
group by sid,uos code
having sum(mark) > 100)

)

B Note: Although generalizing nicely the semantic constraints,
assertions are not supported by any DBMS at the moment...

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-36

Comparison of Constraints

B Principle differences among integrity constraints types

CHECK

on attribute

relation or attribute
update

Not if subquery

Type of . Guaranteed to Supported by
constraint Where declared | When activated hold? DBMS

DEFAULT CREATE TABLE insert or updat Y All

NOT NULL/NULL | on attribute seftorupdates | Yes

CREATE Own schema .
DOMAIN object n.a. n.a. Sybase; Postgres
Referential Any table All* (MySq| since
integrity CREATE TABLE | o dification Yes v4 x with InnoDB)
Attribute-based | CREATE TABLE | On insertion to

All except MySQL

On insertion to

All except MySQL

relation

- relation or attribute .
Elj_lpéal:ased %&gi‘éOf CREATE update Not if subquery but subqueries
only with Sybase
On any change to
Assertion oOk\)/}/ngchema any mentioned Yes none

wfw INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm)

07-37

=

CREATE DOMAIN Post

Name

CREATE DOMAIN -- define a new domain

Synopsis

CREATE DOMAIN name [AS] data type
[DEFAULT expression]
[constraint |

where constraint is:
[CONSTRAINT constraint name |
{ NOT NULL | NULL | CHECK (expression) }

Description

11

greSQL Synta

Quote from the
PostgreSQL 8.3 manual

X

CREATE DOMAIN creates a new data domain. A domain is essentially a data type

with optional constraints (restrictions on the allowed set of values). The
user who defines a domain becomes its owner.

If a schema name is given (for example, CREATE DOMAIN myschema.mydomain ..

-)

then the domain is created in the specified schema. Otherwise it is created in
the current schema. The domain name must be unique among the types and domains
existing in its schema.
Domains are useful for abstracting common fields between tables into a single
location for maintenance. For example, an email address column may be used in

several tables, all with the same properties. Define a domain and use that

rather than setting up each table's constraints individually.

At the moment, only PostgreSQL (and also Interbase/Firebird) support the CREATE DOMAIN statement.

DB?2 includes something similar - CREATE DISTINCTIVE TYPE - but doesn't allow a constraint to be included
Sybase/SQLServer use a stored procedure - sp_addtype, which is similar to DB2's CREATE DISTINCTIVE TYPE.
Oracle uses a variation on the CREATE TYPE syntax from SQL:1999 which is actual adding an object type.

But just like Sybase, MS SQL Server and DB2 it does not accept a named constraint or CHECK clause
INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm)

07-38

Integrity Constraints in MySQL

Quotes from the MySQL 5.1 manual (Section 1.9):
Foreign Key / Referential Integrity Constraints
“In MySQL Server 3.23.44 and up, the InnoDB storage engine supports checking of foreign key
constraints, including CASCADE, ON DELETE, and ON UPDATE. See Section 13.5.6.4, ‘FOREIGN KEY
Constraints’ . For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in
CREATE TABLE statements, but does not use or store it.”

Domain Constraints and NOT NULL

“If you are not using strict mode, then whenever you insert an ‘incorrect’ value into a column, such as a
NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the ‘best possible value’ instead of produ-cing an error: [...] For strings, MySQL stores either
the empty string or as much of the string as can be stored in the column. ...” [and so on...]

Semantic Integrity Constraints (CHECK): Are parsed, but not supported as of MySQL 5.1
“The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY, FOREIGN
KEY, CHECK. [...] The CHECK value is not available until we support CHECK. “

Dynamic Integrity Constraints (Triggers)
“Stored procedures and functions are implemented beginning with MySQL 5.0.”

Transactions:

“MySQL Server ([...] all versions 4.0 and above) supports transactions with the InnoDB transactional
storage engine. InnoDB provides full ACID compliance. [...]

The other non-transactional storage engines in MySQL Server (such as MylSAM) follow a different
paradigm for data integrity called “atomic operations.” In transactional terms, MylSAM tables effectively
always operate in AUTOCOMMIT=1 mode.

Atomic operations often offer comparable integrity with higher performance. “ [often!?!]

Views and Subqueries
Views are implemented since MySQL 5.0.1; Subqueries are available since MySQL 4.1

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-39

Today' s Agenda
B Database Security
B Static Integrity Constraints
» Domain Constraints

» Key / Referential Constraints
» Semantic Integrity Constraints

B Dynamic Integrity Constraints

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-40

Triggers

B A trigger is a statement that is executed automatically if
specified modifications occur to the DBMS.

W A trigger specification consists of three parts:
ON event IF precondition THEN action

» Event (what activates the trigger?)
» Precondition (guard / test whether the trigger shall be executed)
» Action (what happens if the trigger is run)

B Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-41

Why Triggers?

B Constraint maintenance

» Triggers can be used to maintain foreign-key and semantic
constraints; commonly used with ON DELETE and ON UPDATE

B Business rules
» Some dynamic business rules can be encoded as triggers
B Monitoring
» E.g. to react on the insertion of some kind of sensor reading into db

B Maintenance of auxiliary cached data

» Carefull Many systems now support materialized views which should
be preferred against such maintenance triggers

B Simplified application design

» E.g. exceptions modelled as update operations on a database
(if applicable)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-42

Trigger Example (SQL:1999)

CREATE TRIGGER gradeUpgrade
AFTER INSERT OR UPDATE ON Assessment
BEGIN
UPDATE Enrolled E
SET grade=‘P’
WHERE grade IS NULL
AND (SELECT SUM (mark)
FROM Assessment A
WHERE A.sid=E.sid AND
A.uos=E.uosCode) >= 50;

END;

wfw INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-43

Design Space of Triggers

B Activation - Occurrence of the event

B Consideration - The point, after activation, when condition
is evaluated
» Immediate or deferred (when the transaction requests to commit)
» Condition might refer to both the state before and the state after
event occurs
B Execution — point at which action occurs
» With deferred consideration, execution is also deferred

» With immediate consideration, execution can occur immediately after
consideration or it can be deferred

= |f execution is immediate, execution can occur before, after, or instead
of triggering event.

= Before triggers adapt naturally to maintaining integrity constraints:
violation results in rejection of event.

=

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-44

Triggering Events and Actions in SQL

B Triggering event can be insert, delete or update

B Triggers on update can be restricted to specific attributes
CREATE TRIGGER overdraft-trigger AFTER UPDATE OF balance
ON account
B Values of attributes before and after an update can be referenced
» REFERENCING OLD ROW AS name : for deletes and updates
> REFERENCING NEW ROW AS name : for inserts and updates
» In PostgreSQL: separate OLD and NEW variable automatically in trigger block

B Triggers can be activated before an event, which can serve as extra
constraints.
» E.g. convert blanks to null:
CREATE TRIGGER setnull-trigger BEFORE UPDATE ON s
REFERENCING NEW ROW AS nrow
FOR EACH ROW

WHEN nrow.country = ' ‘
SET nrow.country = null
wis/ INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-45

Trigger Granularity

B Granularity

» Row-level granularity: change of a single row is an event (a single
UPDATE statement might result in multiple events)

» Statement-level granularity: events are statements (a single
UPDATE statement that changes multiple rows is a single event).

B Can be more efficient when dealing with SQL statements
that update a large number of rows...

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-46

Statement vs. Row Level Trigger

B Example: Assume the following schema
Employee (name, salary)
with 7000 tuples and an ON UPDATE trigger on salary...

B Now let’ s give employees a pay rise:
UPDATE Employee SET salary=salary*1.025;

® Update Costs:
» How many rows are updated? 1000
» How often is a row-level trigger executed?

» How often is a statement-level trigger executed? 1000

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-47

Trigger Granularity - Syntax

M Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by

a transaction

» Use FOR EACH STATEMENT instead of FOR EACH ROW
(actually the default)

» Some systems (e.g. Oracle, but NOT PostgreSQL) allow to use
REFERENCING OLD TABLE

or REFERENCING NEW TABLE
to refer to temporary tables (called transition tables) containing the

affected rows

B Can be more efficient when dealing with SQL statements
that update a large number of rows...

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-48

Triggers in SQL:1999

B Events: INSERT, DELETE, or UPDATE statements or changes
to individual rows caused by these statements
» Since SQL:2008: also INSTEAD OF triggers

B Condition: Anything that is allowed in a WHERE clause

B Action: An individual SQL statement or a program written
in the language of Procedural Stored Modules (PSM) (which
can contain embedded SQL statements)

B Consideration: Immediate

» Condition can refer to both the state of the affected row or table
before and after the event occurs

B Execution: /Immediate — can be before or after the
execution of the triggering event
» Action of before trigger cannot modify the database
B Granularity: Both row-level and statement-level

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-49

Triggers — PostgreSQL Syntax

CREATE TRIGGER trigger-name

INSERT
BEFORE DELETE ON relation-name
AFTER UPDATE

FOR EACH ROW

WHEN (condition) -
EXECUTE PROCEDURE stored-procedure-name ()

—— PL/pgSQL can be used to define trigger procedures
-— needs to be specified with no arguments
-- When a PL/pgSQL function is called as a trigger, several special variables
-- are created automatically in the top-level block:
NEW
OLD
TG_WHEN ('BEFORE' or 'AFTER’)
TG_OP ('INSERT', 'DELETE, 'UPDATE', 'TRUNCATE')

[cf. http://www.postgresqgl.org/docs/8.4/static/plpgsql-trigger.html]
INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-50

Before Trigger Example
(row granularity, PostgreSQL syntax)

CREATE FUNCTION AbortEnrolment () RETURNS trigger AS $$

BEGIN
RAISE EXCEPTION ‘unit is full’; —- aports| (111 PosigreSOL you
first need to define
END a trigger function...

$$ LANGUAGE pgplsql;

CREATE TRIGGER Max_EnrollCheck B ... B o @

BEFORE INSERT ON Transcript declare the actiual
FOR EACH ROW trigger, that uses it
WHEN ((SELECT COUNT (T.studId)

Checkthat | FROM Transcript T

Eemd%wﬂiﬁmﬂj WHERE T.uosCode = NEW.uosCode AND
"""""""" Vs T.semester = NEW.semester)
>= (SELECT U.maxEnroll
FROM UnitOfStudy U
WHERE U.uosCode = NEW.uosCode))
EXECUTE PROCEDURE AbortEnrolment() ;

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-51

After Trigger Example

(statement granularity, PostgreSQL syntax)

CREATE TABLE Log (..)
CREATE FUNCTION SalarylLogger () RETURNS trigger AS $$
BEGIN
INSERT INTO Log
VALUES (CURRENT DATE, SELECT AVG (Salary)
FROM Employee) ;
RETURN NEW; S, \
END ‘ Keep track of salary

$$ LANGUAGE plpgsql; L gerages Inthe log j

CREATE TRIGGER RecordNewAverage -
AFTER UPDATE OF Salary ON Employee
FOR EACH STATEMENT
EXECUTE SalaryLogger () ;

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-52

Triggers - Oracle Syntax an

CREATE OR REPLACE TRIGGER trigger-name

AFTER DELETE ON relation—-name
NSTEAD OF. UPDATE OF attr

L:BEFORE] INSERT

AS variable-name -

REFERENCING OLD
NEW

FOR EACH ROW
WHEN (condition)
DECLARE
<local variable declarations>
BEGIN
<PL/SQL block>
END;

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-53

Before Trigger Example

(row granularity, Oracle syntax) .. s

enrollment < limit

CREATE TRIGGER Max EnrollCheck
BEFORE INSERT ON Transcript
REFERENCING NEW AS N -—row to be added
FOR EACH ROW
WHEN ((SELECT COUNT (T.studId)
FROM Transcript T
WHERE T.uosCode = N.uosCode AND
T.semester = N.semester)

>=
P . (SELECT U.maxEnroll
| Jadenelo | FROM UnitOfStudy U
L viherormsg i WHERE U.uosCode = N.uosCode))

RAISE_APPiICATION_ERROR(—ZOOOO, "unit is full’);

. END; ..
INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-54

After Trigger Example

(statement granularity, Oracle syntax)

(T .
i Keep track of salary
i averages in the log !

CREATE TRIGGER RecordNewAverage
AFTER UPDATE OF Salary ON Employee
FOR EACH STATEMENT
BEGIN
INSERT INTO Log
VALUES (CURRENT DATE, SELECT AVG(Salary)
FROM Employee) ;
END;

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Rohm) 07-55

Some Tips on Triggers

® Use BEFORE triggers
» For checking integrity constraints
B Use AFTER triggers

» For integrity maintenance and update propagation

M In Oracle, triggers cannot access “mutating” tables
» e.g. AFTER trigger on the same table which just updates

B Good overviews:

» Kifer/Bernstein/Lewis: “Database Systems - An Application-oriented
Approach”, 2nd edition, Chapter 7.

» Michael v.Mannino: “Database - Design, Application Development
and Administration”

» Oracle Application Developer’s Guide, Chapter 15

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-56

When Not to Use Triggers

B Triggers were used earlier for tasks such as
» maintaining summary data (e.g. total salary of each department)

» Replicating databases by recording changes to special relations
(called change or delta relations) and having a separate process that
applies the changes over to a replica

M There are better ways of doing these now:

» Databases today provide built-in materialized view facilities to
maintain summary data

» Databases provide built-in support for replication

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-57

You should now be able to:

B Capture Integrity Constraints in an SQL Schema

» Including key constraints, referential integrity, domain constraints
and semantic constraints

» And simple triggers for dynamic consttraints
B Formulate complex semantic constraints using Assertions

B Know when to use Assertions, when triggers, and when
CHECK constraints

B Know the semantic of deferring integrity constraints

B Be able to formulate simple triggers

B Know the difference between row-level & statement-level
triggers

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Réhm) 07-58

References

m Kifer/Bernstein/Lewis (2nd edition)
» Sections 3.2.2-3.3 and Chapter 7

» Integrity constraints are covered as part of the relational model, but a good
dedicated chapter (Chap 7) on triggers

B Ramakrishnan/Gehrke (3rd edition - the ‘Cow’ book)
» Sections 3.2-3.3 and Sections 5.7-5.9

» Integrity constraints are covered in different parts of the SQL discussion; only
brief on triggers

B Ullman/Widom (3rd edition)
» Chapter 7
» Has a complete chapter dedicated to both integrity constraints&triggers. Good.

B Michael v.Mannino: “Database - Design, Application Development and
Administration”
» Include a good introduction to triggers.
® Oracle Application Developer’s Guide, Chapter 15
» The technical details on the specific Oracle syntax and capabilities.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Rohm) 07-59

Next Topic

® Database Application Development
» Embedded SQL in Client Code
» Call-level Database APIs
» Server-Side Application Development with Stored Procedures

B Readings:
» Kifer/Bernstein/Lewis book, Chapter 8

» or alternatively (if you prefer those books):
= Ramakrishnan/Gehrke (Cow book), Chapter 6
= Ullman/Widom, Chapter 9

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. R6hm) 07-60

