
Dr. Uwe Röhm
School of Information Technologies

INFO2120 – INFO2820 – COMP5138
Database Systems
Week 9: Transaction Management
(Kifer/Bernstein/Lewis – Chapter 18; Ramakrishnan/Gehrke – Chapter 16; Ullman/Widom – Chapter 6.6)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-2

Learning Objectives for this Week
!  Understanding of Transaction Management

! What is a transaction and why are transactions important?
! ACID guarantees given by databases
! How to define transactions in SQL

!  The Theory behind: Correctness of Transaction Programs
!  Idea of conflict serializability
!  how it avoids update anomalies

!  Overview of Concurrency Control techniques
! 2 Phase Locking vs. Snapshot Isolation
! Deadlock problem
! Correctness vs. Performance:

SQL Isolation Levels

Based on slides from Kifer/Bernstein/Lewis (2006) “Database Systems”,
and from Ramakrishnan/Gehrke (2003) “Database Management Systems”

and also including material from Fekete and Röhm.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-3

Transaction Concept
!  Many enterprises and organisations use databases to store

information about their state
! e.g., Balances of all depositors at a bank

!  When an event occurs in the real world that changes the
state of the enterprise, a program is executed to change the
database state in a corresponding way
! e.g., Bank balance must be updated when deposit is made

!  Such a program is called a transaction:
a collection of one or more operations on one or more
databases, which reflects a discrete unit of work
!  In the real world, this happened (completely) or it didn’t happen at all

(Atomicity)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-4

What Does a Transaction Do?
!  Return information from the database

! RequestBalance transaction:
Read customer’s balance in database and output it

=> transactions can be read-only

!  Update the database to reflect the occurrence of a real
world event
! Transfer money between accounts

!  Update customers’ balances in database(s)
! Purchase a group of products
! Students enrolling in an unit of study

!  Cause the occurrence of a real world event
! Withdraw transaction:

Dispense cash (and update customer’s balance in database)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-5

Transactional Guarantees
!  The execution of each transaction must maintain relationship

between the database state and the enterprise state
! correctness and consistency of the database is paramount!

!  Therefore additional requirements are placed on the
execution of transactions beyond those placed on ordinary
programs:

! Atomicity
! Consistency
!  Isolation
! Durability

ACID
properties

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-6

A C I D Properties
!  Atomicity. Transaction should either complete or have no

effect at all
!  In case of a failure, all effects of operations of not-completed

transactions are undone.

!  Consistency. Execution of a transaction in isolation
preserves the consistency of the database.

!  Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions.
!  Intermediate transaction results must be hidden from other

concurrently executed transactions.

!  Durability. The effect of a transaction on the database state
should not be lost once the transaction has committed

ACID properties handled transparent for the transaction by the DBMS

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-7

A - Atomicity
!  A real-world event either happens or does not happen

! Student either registers or does not register

!  Similarly, the system must ensure that either the
corresponding transaction runs to completion or, if not, it
has no effect at all
! a user can think of a transaction as always executing all its actions in

one step, or not executing any actions at all.
! Not true of ordinary programs. A crash could leave files partially

updated on recovery.
!  DBMS logs all actions so that it can undo the actions of aborted

transactions.
!  Also, in case of a failure, all actions of not-committed transactions are

undone.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-8

Commit and Abort

!  If the transaction successfully completes it is said to commit
! The system is responsible for ensuring that all changes to the

database have been saved

!  If the transaction does not successfully complete, it is said
to abort
! The system is responsible for undoing, or rolling back, all changes

 – in the database! - that the transaction has made
! Possible reasons for abort:

!  System crash
!  Transaction aborted by system

•  Execution cannot be made atomic (a site is down)
•  Execution did not maintain database consistency (integrity constraint violated)
•  Execution was not isolated
•  Resources not available (deadlock)

!  Transaction requests to roll back

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-9

Famous DB Researchers: Jim Gray
!  One of the most influential database

researchers and software designers
! Co-authored the �bible� on Transaction Mgmt:

 �Transaction Processing: Concepts and  
Techniques� (Gray/Reuter, 1993) "

!  first Ph.D. from CS at UC Berkeley (1969)
! worked for

 IBM (at System R)
 Tandem-Computers, DEC, …,
 Microsoft Research

!  Turing Award (1998)
! "for seminal contributions to database  

and transaction processing research  
and technical leadership in system implementation.""

Jim Gray (1944-2007)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-10

API for Transactions
!  Data manipulation language must provide commands for

setting transaction boundaries. For example:
! begin transaction
! commit ; rollback

!  In many DBMS such as Oracle, a transaction begins implicitly
! Some other DBMS (eg. Sybase, SQL Server or PostgreSQL) provide a

BEGIN TRANSACTION command

!  A transaction ends by:
! COMMIT requests to commit current transaction

!  The system might commit the transaction, or it might abort if needed.
! ROLLBACK causes current transaction to abort - always satisfied.

!  The commit command is a request
! The system might commit the transaction, or it might abort it for one of

the reasons on the previous slide.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-11

Transaction Example
!  Pseudocode for a product order transaction:
 display greeting
 get order request
 BEGIN TRANSACTION
 SELECT product record
 IF product is available THEN
 UPDATE quantityOnOrder of product record
 INSERT order record
 COMMIT

 send message to shipping department
 ELSE

 ROLLBACK
 END IF

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-12

Another Transaction Example
!  Transaction in Embedded SQL

1.   EXEC SQL BEGIN DECLARE SECTION
2.   int flight;
3.   char date[10]
4.   char seat [3]
5.   int occ;
6.   EXEC SQL END DECLARE SECTION
7.   Void chooseSeat() {
8.  /* C code to prompt the user to enter flight, date, and seat and store these in the three variables

with those name */
9.  EXEC BEGIN TRANSACTION
10.   EXEC SQL Select occupied into :occ
11.   From Flights
12.   Where fltNum=:flight and fltDate=:date and fltSeat=:seat;
13.   if (!occ) {
14.   EXEC SQL Update Flights
15.   Set occupied = true
16.   Where fltNum=:flight and fltDate=:date and fltSeat=:seat;
17.  /*C and SQL code to record the seat assignment and inform the user of the assignment */
18.   } else { /* C code to notify user of unavailability and ask for another seat selection */ }
19.  EXEC COMMIT;
20.  }

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-13

Transactions in JDBC
!  Some database APIs provide explicit functions for

controlling the transaction semantics
!  Example from Week 7: JDBC and Transactions

! JDBC�s Connection Class:
!  Provides commit() and rollback() methods
!  allows to set SQL Isolation levels (see later)
!  allows to set AutoCommit mode on/off

!  By default, transactions are in AutoCommit mode
! each SQL statement is considered its own transaction!
! No explicit commit, no transactions with more than one statement…

!  Hence: Have to set AutoCommit OFF first
! connection.setAutoCommit(false) !
! Now a new transaction start implicit with first SQL statement, and

explicit commit() or abort() calls are needed to end it

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-14

Transactions in JDBC - Example
 public void bookFlight (String flight_num, Date flight_date, Integer seat_no)

{
 try {/* connect to the database */
 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:@oracle10…”);

 /* set AUTOCOMMIT off; next SQL statement will start a transaction */
 conn.setAutoCommit(false);

 /* execute the SQL statements within the transaction */
 PreparedStatement stmt = conn.prepareStatement(“SELECT occupied
 FROM Flight
 WHERE flightNum=? AND flightDate=? AND seat=?”);
 stmt.setString(1, flight_num); stmt.setDate(2, flight_date); stmt.setInteger(3, seat_no);
 ResultSet rset = stmt.executeQuery();

 If (!rset.empty() && rset.next().getInteger()==0) {
 stmt = conn.prepareStatement(“UPDATE Flight SET occupied=TRUE

 WHERE flightNum=? AND flightDate=? AND seat=?”);
 stmt.setString(1, flight_num); stmt.setDate(2, flight_date); stmt.setInteger(3, seat_no);
 stmt.executeUpdate();
 }

 /* COMMIT the transaction */
 conn.commit();

 stmt.close();
 conn.close();
 }
 catch (SQLException sqle) {
 /* error handling */

 }
}

Transactions in PHP
!  Most database extension of PHP rely solely on the database for

transactions and assume every statement to be separate
! one has to define transaction blocks using explicit SQL statements
! Alternatively: Use of stored procedures!

!  Exemption: the Oracle 'oci8_' library works similar to JDBC with an
autocommit flag and oci8_commit() and oci8_rollback() functions

!  To define transactions in PHP for PostgreSQL, use explicit
BEGIN TRANSACTION and COMMIT (or ROLLBACK) 'queries':
<?php  
 $db = new PDO("dbname=somebankdb", $user, $pw);  
 $db->beginTransaction();  
 $stmt = $db->query("UPDATE Accounts
 SET balance = balance-100.00 WHERE name = 'Alice'") 
 //… etc etc  
 $db->commit();  
?>"

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-15

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-16

Database Consistency
!  Enterprise (Business) Rules limit the occurrence of certain

real-world events
! Student cannot register for a course if the current number of

registrants equals the maximum allowed

!  Correspondingly, allowable database states are restricted
!  cur_reg <= max_reg

!  These limitations are called (static) integrity constraints:
assertions that must be satisfied by the database state

!  Database is consistent if all static integrity constraints are
satisfied

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-17

C - Transaction Consistency
!  A consistent database state does not necessarily model the actual state

of the enterprise
!  A deposit transaction that increments the balance by the wrong amount

maintains the integrity constraint balance ≥ 0, but does not maintain the
relation between the enterprise and database states

!  Dynamic Integrity Constraints: Some constraints restrict allowable state
transitions
!  A transaction might transform the database from one consistent state to another,

but the transition might not be permissible
!  Example: Students can only progress from Junior via Intermediate to the Senior

year, but can never be degraded.

!  A consistent transaction maintains database consistency and the
correspondence between the database state and the enterprise state
(implements its specification)
!  Specification of deposit transaction includes

 balance = balance" + amt_deposit ,
 (balance" is the initial value of balance)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-18

Transaction Consistency (cont�d)
!  A transaction is consistent if, assuming the database is in

a consistent state initially, when the transaction completes:
! All static integrity constraints are satisfied (but constraints might be

violated in intermediate states)
!  Can be checked by examining snapshot of database

! New state satisfies specifications of transaction
!  Cannot be checked from database snapshot

! No dynamic constraints have been violated
!  Cannot be checked from database snapshot

!  Note that this is mainly the responsibility of the application
developer!
! database cannot 'fix' the correctness of a badly coded transaction

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-19

Integrity Constraints and Transactions
!  When do we check integrity constraints?

!  Immediate after an SQL statement or at the end of a transaction?

!  Remember from week 05:
!  Integrity constraints may be declared:

!  NOT DEFERRABLE
The default. It means that every time a database modification occurs,
the constraint is checked immediately afterwards.

!  DEFERRABLE
Gives the option to wait until a transaction is complete before checking
the constraint.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-20

Deferrable Integrity Constraints Example
CREATE TABLE UnitOfStudy (
 uos_code VARCHAR(8),
 title VARCHAR(220),
 lecturer INTEGER,
 credit_points INTEGER,
 CONSTRAINT UnitOfStudy_PK PRIMARY KEY (uos_code),
 CONSTRAINT UnitOfStudy_FK FOREIGN KEY (lecturer)

 REFERENCES Lecturer DEFERABBLE INITIALLY IMMEDIATE
);

BEGIN TRANSACTION;

SET CONSTRAINTS UnitOfStudy_FK DEFERRED;
INSERT INTO Teaching VALUES(‘info1000’,2009,‘S1’,42);
INSERT INTO Lecturer VALUES(42,’Steve McQueen’, …);

COMMIT;

lecturer 42 has
to exist for the
FK to be OK

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-21

D - Durability
!  The system must ensure that once a transaction commits,

its effect on the database state is not lost in spite of
subsequent failures
! Not true of ordinary programs. A media failure after a program

successfully terminates could cause the file system to be restored to
a state that preceded the program’s execution

!  Implementing Durability:
! Database is stored redundantly on mass storage devices to protect

against media failure
! Architecture of mass storage devices affects type of media failures

that can be tolerated
! Related to Availability: extent to which a (possibly distributed)

system can provide service despite failure
!  Non-stop DBMS (mirrored disks)
!  Recovery based DBMS (log)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-22

I - Isolation
!  Serial Execution: transactions execute in sequence

! Each one starts after the previous one completes.
!  Execution of one transaction is not affected by the operations of another

since they do not overlap in time
! The execution of each transaction is isolated from all others.

!  If the initial database state and all transactions are
consistent, then the final database state will be consistent
and will accurately reflect the real-world state, but
! Serial execution is inadequate from a performance perspective

!  Concurrent execution offers performance benefits:
! A computer system has multiple resources capable of executing

independently (e.g., cpu’s, I/O devices), but
! A transaction typically uses only one resource at a time
! but might not be correct…

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-23

Concurrent Execution

T1

T2

DBMS

local computation

local variables

sequence of db
operations output by T1 op1,1 op1.2

op2,1 op2.2

op1,1 op2,1 op2.2 op1.2

interleaved sequence of db
operations input to DBMS

begin trans
 ..
 op1,1
 ..
 op1,2
 ..
commit

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-24

Example
!  Let‘s consider two transactions:

!  Transaction T1 is transferring $100 from account A to account B.
The second transaction credits both accounts with a 5% interest payment.

!  Atomicity requirement — all updates are reflected in the db or none.
!  Consistency requirement – T1 does not change the total sum of A and

B, and after T2, this total sum is 5% higher.
!  Isolation requirement — There is no guarantee that T1 will execute

before T2 or vice-versa, if both are submitted together. However, the net
effect must be equivalent to these transactions running serially in some
order.

!  Durability requirement — once a transaction has completed, the updates
to the database by this transaction must persist despite failures

T1: BEGIN A=A-100, B=B+100 END
T2: BEGIN A=1.05*A, B=1.05*B END

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-25

Example (cont�d)
!  Consider a possible interleaving (schedule):

!  This is OK. But what about:

!  The DBMS’s view of the second schedule:

T1: A=A-100, B=B+100
T2: A=1.05*A, B=1.05*B

T1: R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B)

T1: A=A-100, B=B+100
T2: A=1.05*A, B=1.05*B

[text boxes to be filled-in in lecture]

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-26

Anomalies with Interleaved Execution
!  Reading Uncommitted Data (WR conflicts, “dirty reads”):

!  Unrepeatable Reads (RW conflicts):

!  Overwriting Uncommitted Data (WW conflicts,„lost updates“):

T1: R(A),W(A), R(B),W(B),Abort
T2: R(A),W(A),Commit

T1: R(A), R(A),W(A),Commit
T2: R(A),W(A),Commit

T1: W(A), W(B),Commit
T2: W(A),W(B),Commit

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-27

Serializability

!  The Issue: Maintaining database correctness when many
transactions are accessing the database concurrently
! Basic Assumption:�Each transaction preserves database

consistency.
! Thus serial execution of a set of transactions preserves database

consistency.

!  Serializability:
A sequence of database operations is serializable if it is
equivalent to a serial execution of the involved transactions

!  Central Theorem of concurrent execution in DBMS:
! A serializable execution guarantees correctness in that it moves

a database from one consistent state to another consistent state

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-28

This Week�s Agenda
!  Transaction Management

! Transaction Concept
! Serializability

!  Concurrency Control Mechanisms
! Locking
! Snapshot Isolation
! SQL Isolation Levels

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-29

Concurrency Control vs.
Serializability Tests

!  Testing a schedule for serializability after it has executed is
a little bit too late!

!  Concurrency Control: The protocol that manages
simultaneous operations against a database so that
serializability (actually: isolation levels) is assured.
! Such protocols will generally not examine the precedence graph as it

is being created; instead a protocol will impose a discipline that
avoids non-seralizable schedules.

! Tests for serializability help understand why a concurrency control
protocol is correct.

!  Two important techniques:
! Locking Protocol
! Versioning (aka ‘Snapshot Isolation’)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-30

Lock-based Concurrency Control
!  Two-phase Locking (2PL) Protocol:

! Locks are associated with each data item
! A transaction must obtain a S (shared) lock on object before reading,

and an X (exclusive) lock on object before writing.
!  exclusive (X) lock: Data item can be both read as well as written

 by just one transaction
!  shared (S) lock: Data item can only be read (but shared by transactions)

! All locks held by a transaction are released when the transaction
complete, and a transaction can not request additional locks once it
releases any locks.

!  If a transaction holds an X lock on an object, no other transaction
can get a lock (S or X) on that object.
!  Similar if a transaction requests a X lock of an already locked data object
!  Instead, such transactions must wait until the conflicting lock is released

from the previous transaction(s)

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-31

Locking Example

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-32

Lock Compatibility Matrix
and Lock Granularity

!  Locking Granularity: size of the database item locked
!  database
!  table / index
!  page
!  row
!  column
!  Tradeoff between waiting time and overhead

Held
Requested

Shared Exclusive

Shared OK T2 wait on T1

Exclusive T2 wait on T1 T2 wait on T1

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-33

Pitfalls of Lock-Based Protocols
!  Consider the partial schedule

!  Neither T3 nor T4 can make progress
!  Such a situation is called a deadlock.

! To handle a deadlock one of T3 or T4 must be rolled back and its
locks released.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-34

Deadlocks
!  Deadlock: Cycle of transactions waiting for locks to be

released by each other.

Two ways of dealing with deadlocks:
!  Deadlock prevention

! E.g. priorities based on timestamps

!  Deadlock detection
! A transaction in the cycle must be aborted by DBMS (since

transactions will wait forever)
! DBMS uses deadlock detection algorithms or timeout to deal with it
! Most commonly used

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-35

Aborting a Transaction
!  If a transaction Ti is aborted, all its actions have to be

undone.
!  if Tj reads an object last written by Ti, Tj must be aborted as well!

!  Most systems avoid such cascading aborts by releasing a
transaction’s locks only at commit time.
!  If Ti writes an object, Tj can read it only after Ti commits.

!  To undo the actions of an aborted transaction,DBMS
maintains a log in which every write is recorded.
! The log is also used to recover from system crashes:

all active Xacts at the time of the crash are aborted when the system
comes back up.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-36

2PL versus Strict 2PL
!  Two-Phase locking: All locks are acquired before any lock is

released

Phase 1 Phase 2

Strict: Transaction holds all locks until completion

t

locks

t

locks

However: possible
cascading aborts!

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-37

Isolation Levels
!  Serializability provides a conservative definition of correctness

! For a particular application there might be many acceptable non-
serializable schedules

! Requiring serializability might degrade performance

!  In addition to serializable, every DBMS offers a variety of less
stringent isolation levels
! SERIALIZABLE is the most stringent (correct for all applications)
! Lower levels of isolation give better performance

!  Might allow incorrect schedules
!  Might be adequate for some applications
!  Performance requirements might not be achievable if schedules are

serializable

!  Application programmer is responsible for choosing
appropriate level!!!

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-38

Anomalies in Non-Serializable
Schedules

!  Dirty read (previous example – write lock given up early)
 w1(x) r2(x) abort1

!  Non-Repeatable Read (read lock given up early)
 r1(x) w2(x) commit2 r1(x)

!  Lost Update (result of non-repeatable read – read lock
given up early)
! Two transactions trying to deposit in the same bank account – the

deposit of transaction 2 is lost
r1(Bal) r2(Bal) w2(Bal) commit2 w1(Bal) commit1

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-39

ANSI Standard Isolation Levels

!  Defined in terms of anomalies
! Anomaly prohibited at one level is also prohibited at all higher levels
! Serializable — default according to SQL-standard…

!  In practice, most systems have weaker default level!
! Repeatable read — only committed records to be read, repeated

reads of same record must return same value. However, a transaction
may not be serializable – it may find some records inserted by a
transaction but not find others.

! Read committed — only committed records can be read,
but successive reads of record may return different (but committed)
values. (most common in practice!)

! Read uncommitted - even uncommitted records may be read

!  Lower degrees of consistency useful for gathering
approximate information about the database, e.g., statistics
for query optimizer.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-40

Locks and Isolation Levels
!  DBMS guarantees that each SQL statement is isolated
!  Early (non-strict) lock release used to implement levels

! Short-term locks - held for duration of single statement
! Long-term locks - held until transaction completes (strict)

!  At all levels, transactions obtain long-term write locks
!  This means for isolation levels:

! READ UNCOMMITTED - no read locks (dirty reads possible since
transaction can read a write-locked item)

! READ COMMITTED - short-term read locks on rows (non-repeatable
reads possible since transaction releases read lock after reading)

! REPEATABLE READ - long-term read locks on rows (phantoms
possible)

! SERIALIZABLE - combination of long-term table, row, and index locks

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-41

Snapshot Isolation
!  Not an ANSI standard isolation level, but used in some

major DBMS
! Oracle, SQL Server since version 2005, PostgreSQL since version 8

!  Multiversion database: The old value of an item is not
overwritten when it is updated. Instead, a new version is
created on update.
! DBMS can construct, for any i, the state of an item as a result of the

execution of the first i transactions to commit
! Snapshot: The database state produced by the execution of the first

i transactions to commit

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-42

Snapshot Isolation (cont'd)
!  Transaction execution:

! No read locks necessary: a transaction reads all values from the
latest snapshot at the time it started.

! Updates create new versions of data items (subject to commit).

!  A transaction can successfully commit if
!  it was read-only, or
! none of its updated data items were concurrently updated too

(disjoint write sets with concurrent transactions), or
!  transaction T that has updated x can commit if no other transaction

that concurrrently updated x has committed yet
!  First-committer-wins rule
!  after T committed, the other (concurrent) transactions that updated x too

will need to abort.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-43

Discussion
!  Locking is a conservative approach in which conflicts are

prevented. Disadvantages:
! Lock management overhead.
! Deadlock detection/resolution.
! Lock contention for heavily used objects.

!  Snapshot Isolation
! Good performance (‚readers never block‘)
!  Implementation complicated by need to maintain multiversion DB.

Eventually old versions must be discarded (creates problems for long-
running transactions).

! Write-skew anomaly is possible (disjoint writes based on shared
reads) which can lead (in rare cases) to non-serialisable executions...
!  Example: r1(x) r1(y) r2(x) r2(y) w1(x) w2(y)
!  Avoiding this is possible (only PostgreSQL 9.1 so far), but adds overhead.

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-44

Learning Outcomes:
!  Understanding: Transaction Concept

! What is a transaction and why are transactions important?
! ACID guarantees given by databases
! How to define transactions in SQL

!  Theory: Correctness of Transaction Programs
! Serializability criterion for correctness to avoid update anomalies

!  Practice: Concurrency Control techniques in DBMS�s
! Concurrency control and recovery are among the most important

functions provided by a DBMS. - Users need not worry about this.
! General idea of 2 Phase Locking and Snapshot Isolation
! Deadlock problem; SQL Isolation Levels

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-45

References
!  Kifer/Bernstein/Lewis (2nd edition)

!  Chapter 18 + parts of Chapter 20
!  Kifer/Bernstein/Lewis, especially the ‘complete’ version, has lots of coverage

of transactions in several chapters. For the purpose of INFO2120, we keep
on the overview Chapter 18 with parts of Chapter Section 20;
the introductionary version of this book combines this in one Chapter 13

!  Ramakrishnan/Gehrke (3rd edition - the ‘Cow’ book)
!  Chapter 16 (without the recovery part)
!  Stick to the overview chapter of transaction management in the Cow book;

this book also contains two very technical chapters on all the implementation
details for CC and recovery which we will cover in the 3rd year INFO3404

!  Ullman/Widom (3rd edition - �First Course in Database Systems�)
!  Chapter 6.6

only gives a high-level introduction to the transaction commands of SQL
!  Silberschatz/Korth/Sudarshan (5th edition - ‘sailing boat’)

!  Chapter 15

INFO2120/INFO2820/COMP5138 "Database Systems" - 2013 (U. Röhm) 09-46

Next Week
!  Indexing
!  Schema Tuning

! Denormalization and Partitioning

!  SQL Query Tuning

!  Readings:
! Kifer/Bernstein/Lewis book, Chapter 12
! or alternatively (if you prefer those books):

!  Ramakrishnan/Gehrke (Cow book), Chapter 8
!  Ullman/Widom, Chapter 8.3 onwards

