
Dr. Uwe Röhm
School of Information Technologies

INFO2120 – INFO2820 – COMP5138
Database Systems
Week 10: Indexing and Tuning
(Kifer/Bernstein/Lewis – Chapter 9.4 & 12; Ramakrishnan/Gehrke – Chapter 8; Ullman/Widom – Chapter 8.3)

10-2

This Week�s Learning Objectives
!  Database Storage Layer: Physical Data Organisation

! Motivation: Data stored on disks
! Several physical design alternatives possible for same logical schema

!  Indexing of Databases
! Efficient data access based on search keys
! Several design decisions…

!  Database Tuning
! How to suggest appropriate indexes

for a given SQL workload
! Awareness of the trade-off between

query performance and indexing costs
(updates)

Based on slides from Kifer/Bernstein/Lewis (2006) “Database Systems”
and from Ramakrishnan/Gehrke (2003) “Database Management Systems”,

and including material from Fekete and Roehm INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-3

Motivation: Disk Storage
!  DBMS stores information on (“hard”) disks.

! Main memory is much more expensive than HDDs.
A$100 will buy you either 16 GB of RAM or 2 TB of disk today.

! Main memory is volatile.
We want data to be saved between runs. (Obviously!)

!  This has major implications for DBMS design!
!  READ: transfer data from disk to main memory (RAM).
!  WRITE: transfer data from RAM to disk.
!  Both are high-cost operations, relative to in-memory operations, so

must be planned carefully!
!  Indeed, overall performance is determined largely by the number of

disk I/Os done

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-4

Storage Hierarchy
!  primary storage: Fastest media but volatile (cache, RAM).
!  secondary storage: next level in hierarchy, non-volatile,

moderately fast access time
! also called on-line storage
! E.g.: hard disks, solid-state drives

!  tertiary storage: lowest level in hierarchy, non-volatile, slow
access time
! also called off-line storage
! E.g. magnetic tape, optical storage

!  Typical storage hierarchy:
! Main memory (RAM) for currently used data.
! Disk for the main database (secondary storage).
! Tapes for archiving older versions of the data (tertiary storage).

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-5

Disks
!  Currently the secondary storage device of choice.
!  Capable of storing large quantities of data cheaply

! Main advantage over tapes: random access vs. sequential.

!  Non-volatile

!  Extremely slow compared with CPU speed
! Access Gap between primary and secondary storage of order of

magnitudes
! Trends: Disk capacity is growing rapidly, but access speed is not!

!  Data is stored & retrieved in units called disk blocks or
pages.

!  Performance of DBMS largely a function of the number of disk
I/O operations that must be performed

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-6

Physical Disk Structure
!  The platters spin (say, 7200rpm).

!  The arm assembly is moved in
or out to position a head on a
desired track. Tracks under
heads make a cylinder
(imaginary).

!  Only one head reads/writes at
any one time.

!  Block size is a multiple
of sector size (which is fixed).
!  typically sizes: 4kB - 8kB

block

[Kifer/Bernstein/Lewis, 2006]

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-7

Accessing a Database Disk Page
!  Time to access (read/write) a disk block:

! seek time (moving arms to position disk head on track)
! rotational delay (waiting for block to rotate under head)
!  transfer time (actually moving data to/from disk surface)

!  Seek time and rotational delay dominate.
! Seek time varies from about 1 to 20msec
! Rotational delay varies from 0 to 10msec
! Transfer rate is about 1msec per 4KB page

!  Key to lower I/O cost: reduce seek/rotation delays!

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-8

Storage Access
!  A database file is partitioned into fixed-length storage units called data

page). Pages are units of both storage allocation and data transfer.
!  Idea 1: Store related information close together on disk (‘clustered’)
!  Idea 2: Database Buffer: Database system seeks to minimize the

number of block transfers between the disk and memory.

cache

DBMS
Application

Page frames

Page transfer

block
Item transfer

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-9

Organization of Records in Files
!  The database is stored as a collection of files. Each file is

a sequence of records. A record is a sequence of fields.
! Typically: Tablespace as logical unit to hold n tables in different files

!  OS does disk space & buffer management: why not leave
OS to manage these tasks for the DBMS?
! Differences in OS support: portability issues
! Some limitations, e.g., files can�t span disks.
! Buffer management in DBMS requires ability to pin pages etc.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-10

This Week�s Agenda
!  Overview of the Database Storage Layer
!  Access Paths and Indexing
!  Choosing an Index

How to Store a Database?
!  Logical Database Level:

!  A database is a collection of relations. Each relation is a set of records (or
tuples). A record is a sequence of fields (or attributes).

!  Example:
 CREATE TABLE Student (

 id INTEGER PRIMARY KEY,
 name VARCHAR(40) UNIQUE,

 address VARCHAR(255),
 gender CHAR(1),
 birthdate DATE
);

!  Physical Database Level:
!  How to represent tuples with several attributes (fields)?
!  How to represent collection of tuples and whole tables?
!  How do we find specific tuples?

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-11

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-12

Access Path
!  Refers to the algorithm + data structure (e.g., an index) used

for retrieving and storing data in a table
!  The choice of an access path to use in the execution of an

SQL statement has no effect on the semantics of the
statement

!  This choice can have a major effect on the execution time of
the SQL statement

 => Physical Data Independence

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-13

Alternative File Organizations
Many alternatives exist, each ideal for some situations, and not

so good in others:
!  Heap Files – a record can be placed anywhere in the file

where there is space (random order)
! suitable when typical access is a file scan retrieving all records.

!  Sorted Files – store records in sequential order, based on
the value of the search key of each record
! best if records must be retrieved in some order, or only a `range� of

records is needed.

!  Indexes – data structures to organize records via trees or
hashing
!  like sorted files, they speed up searches for a subset of records,

based on values in certain (�search key�) fields
! Updates are much faster than in sorted files.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-14

(Unordered) Heap Files
!  Simplest file structure contains records in no particular order.
!  Access method is a linear scan

!  In average half of the pages in a file must be read,
in the worst case even the whole file

! Efficient if all rows are returned (SELECT * FROM table)
! Very inefficient if a few rows are requested

!  Rows appended to end of file as they are inserted
! Hence the file is unordered

!  Deleted rows create gaps in file
! File must be periodically compacted to recover space

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-15

Example: Transcript Stored as Heap File

666666 MGT123 F1994 4.0
123456 CS305 S1996 4.0 page 0
987654 CS305 F1995 2.0

717171 CS315 S1997 4.0
666666 EE101 S1998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
 page 2

878787 MGT123 S1996 3.0

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-16

Sorted File
!  Rows are sorted based on some attribute(s)

! Successive rows are stored in same (or successive) pages

!  Access method could be a binary search
! Equality or range query based on that attribute has cost log2B to

retrieve page containing first row

!  Problem: Maintaining sorted order
! After the correct position for an insert has been determined, shifting

of subsequent tuples necessary to make space (very expensive)
! Hence sorted files typically are not used per-se by DBMS, but rather

in form of index-organised (clustered) files

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-17

Example: Transcript as Sorted File

111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
123456 CS305 F1995 2.0

123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

234567 CS305 S1999 4.0
 page 2

313131 MGT123 S1996 3.0

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-18

Overflow Example (after Inserts)
 3
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
111111 ECO101 F2000 3.0
122222 REL211 F2000 2.0

 -
123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

 -
234567 CS305 S1999 4.0
 page 2

313131 MGT123 S1996 3.0

 7
111654 CS305 F1995 2.0
111233 PSY 220 S2001 3.0 page 3

Pointer to
overflow chain

Pointer to
next block
in chain

These pages are
not overflown

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-19

Indices
!  Can we come up with a file organisation that is

! as efficient for searches (especially on ranges) as an ordered file?
! as flexible as a heap file for inserts and updates?

!  Idea: Separate location mechanism from data storage
! Just remember a book index:

Index is a set of pages (a separate file) with pointers (page numbers)
to the data page which contains the value

!  Instead of scanning through whole book (relation) each time,
using the index is much faster to navigate (less data to search)

!  Index typically much smaller than the actual data

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-20

Index Example

!  Ordered index: search keys are stored in sorted order

!  Hash index: search keys are distributed uniformly across
�buckets� using a �hash function�.

sid name birthdate
students

country
300697336
300673435
300136899

 300304642
 300002001
 300254672

Peter
Ha Tschi
James
Nga
Jesse
Ahmed

01.01.84
31.5.79

29.02.82
04.05.85
11.10.86
30.12.80

India
China

Australia
Singapur

China
Pakistan

Ahmed
Ha Tschi
James
Jesse
Nga
Peter

Index(name)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-21

The General Picture

In
de

x Data

(table)
value matching

record(s)

(search key) (index entries) (data records)

Note: ‘Cow book’ (Ramakrishnan/Gehrke) means with index entries only the location mechanism,
while it calls the final index entries ‘data entries’; we’ll stick with the notation in the ‘Blue Book’

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-22

Indices
!  An index is an access path to efficiently locate row(s) via

search key fields without having to scan the entire table.
! Any subset of the fields of a relation can be the search key for an

index on the relation.
! Search key is not the same as key (minimal set of fields that uniquely

identify a record in a relation).
!  Candidate key: set of attributes; guarantees uniqueness
!  Search key: sequence of attributes; does not guarantee uniqueness –

just used for search
! Primary keys are typically automatically indexed

!  Index consists of
! Location mechanism (directing search)
!  Index entries (either containing data records or pointers to them)
!  If index entries contain actual records (rows),called integrated index

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-23

Location
Mechanism

Index entries

Storage Structure
!  Structure of file containing a table

!  Heap file (no index, not integrated)
!  Sorted file (no index, not integrated)
!  Integrated file containing index and rows (index entries contain rows)

!  B+ tree
!  Hash

…

Mechanism for
locating index entries

Index entries
integrated
with data rows

Data File

Integrated Storage Structure
contains table and (primary) index:

storage
structure
for table

Data File

Non-integrated Storage Structure
index and storage structure are separated:

Index File

In this case, the storage structure
might be a heap or sorted file, but
often is an integrated file with another
index (on a different search key –
typically the primary key)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-24

Primary vs. Secondary Indices
!  Primary index:

index whose search key specifies the sequential order of file
! Also called main index or integrated index
! Note: Most literature does not distinguish between main and primary

index and just refers to a main index also as the primary index…
! Exception of this is PostgreSQL: it calls an index a primary index if

its search key contains the primary key regardless of data order…

!  Secondary index: an index whose structure is separated
from the data file and whose search key typically specifies
an order different from the sequential order of the file.

!  Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive
!  Because each record access may fetch a new block from disk
!  At least as long as the secondary index is not clustered (see next slides)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-25

Example: Secondary Index
!  Secondary Index on balance field of account
!  As balance is not a candidate key, we need buckets as an

indirection with pointers to tuples with the same search-key

Source: Silberschatz/Korth/Sudarshan: Database System Concepts, 2002.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-26

Index Definition in SQL
!  Create an index

CREATE INDEX name ON relation-name (<attributelist>)
! Example:

 CREATE INDEX StudentName ON Student(name)

!  Index on primary key generally created automatically
! Use CREATE UNIQUE INDEX to indirectly specify and enforce the

condition that the search key is a candidate key.
! Not really required if SQL unique integrity constraint is supported

!  To drop an index
 DROP INDEX index-name

!  Sidenote: SQL-92 does actually not officially define
commands for creation or deletion of indices.
! vendors kind-of �agreed� to use this syntax consistently

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-27

Indices - The Downside
!  Additional I/O to access index pages

(except if index is small enough to fit in main memory)
! The hope is that this is less than the saving through more efficient

finding of data records

!  Index must be updated when table is modified.
! depends on index structure, but in general can become quite costly
! so every additional index makes update slower…

!  Decisions, decisions…
!  Index on primary key is generally created automatically
! Other indices must be defined by DBA or user, through vendor

specific statements
! Choose which indices are worthwhile, based on workload of queries

(cf. later this lecture)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-28

Index Classification
!  Primary Index vs. Secondary

!  If index entries contain actual data rows, then called main index.
!  Oracle calls this integrated storage structure an �index-organised table�
!  Note: Some literature refers to this as primary index

! Otherwise secondary index

!  Unique vs. Non-Unique
! an index over a candidate key is called a unique index (no

duplicates)

!  Single-Attribute vs. Multi-Attribute
! whether the search key has one or multiple fields

!  Clustered vs. Unclustered
!  If data records and index entries are ordered the same way, then

called clustering index.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-29

Clustering Index
!  Clustering index:

index entries and rows are ordered in the same way
! The particular index structure (eg, hash, tree) dictates how the rows

are organized in the storage structure
!  There can be at most one clustering index on a table

! An integrated storage structure is always clustered (since rows and
index entries are the same)

! CREATE TABLE generally creates an integrated, clustered (main)
index on primary key

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-30

Example: Clustered Index
!  Clustered Index on branch-name field of account

Source: Silberschatz/Korth/Sudarshan: Database System Concepts, 2002.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-31

Unclustered Index
!  Unclustered (secondary) index:

index entries and rows are not ordered in the same way
!  An secondary index might be clustered or unclustered with

respect to the storage structure it references
!  It is generally unclustered (since the organization of rows in the

storage structure depends on main index)
! There can be many secondary indices on a table
!  Index created by CREATE INDEX is generally an unclustered,

secondary index

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-32

Unclustered Secondary Index

Clustered vs. Unclustered Indices
!  Clustered Index: Good for range searches over a range of

search key values
! Use index to locate first index entry at start of range

!  This locates first row.
! Subsequent rows are stored in successive locations if index is

clustered (not so if unclustered)
! Minimizes page transfers and maximizes likelihood of cache hits

!  Example: Access Costs of a Range Scan
! Data file has 10,000 pages, 100 rows in search range
! Page transfers for table rows (assume 20 rows/page):

!  Heap: 10,000 (entire file must be scanned)
!  File sorted on search key: log2 10000 + (5 or 6) ≈ 19
!  Unclustered index: ≤ index-height + 100
!  Clustered index: index-height + (5 or 6)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-33

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-34

Comparison
!  Clustered index: index entries and

rows are ordered in the same way
!  There can be at most one clustered

index on a table
!  CREATE TABLE generally creates

an integrated, clustered (main) index
on primary key

!  Especially good for “range
searches” (where search key is
between two limits)
!  Use index to get to the first data row

within the search range.
!  Subsequent matching data rows are

stored in adjacent locations (many
on each block)

!  This minimizes page transfers and
maximizes likelihood of cache hits

!  Unclustered (secondary) index:
index entries and rows are not
ordered in the same way

!  There can be many unclustered
indices on a table
!  As well as perhaps one

clustered index
!  Index created by CREATE

INDEX is generally an
unclustered, secondary index

!  Unclustered isn’t ever as good
as clustered, but may be
necessary for attributes other
than the primary key

"

Indexing in the “Physical World”
!  Library:
 CREATE TABLE Library (

 callno CHAR(20) PRIMARY KEY,
 title VARCHAR(255),
 author VARCHAR(255),
 subject VARCHAR (128)
)
! books are ordered by call number (callno).
! However, we typically search by title, author, subject/keyword

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-35

Indexing in the “Physical World”
!  Library stacks are “clustered” by call number.

!  The catalog is a secondary index…say by Title

!  CREATE Index TitleCatalog on Library(title)

!  Note secondary index is always dense – an index entry for
each record
!  In contrast to the sparse indexes of the call number ranges that are

displayed at the head-side of each library stack

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-36

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-37

Multicolumn Search Keys
!  CREATE INDEX Inx ON Tbl (Att1, Att2)
!  Search key is a sequence of attributes; index entries are

lexically ordered
!  Supports finer granularity equality search:

! “Find row with value (A1, A2) ”

!  Supports range search (tree index only):
! “Find rows with values between (A1, A2) and (A1#, A2#) ”

!  Supports partial key searches (tree index only):
! Find rows with values of Att1 between A1 and A1#
! But not “Find rows with values of Att2 between A2 and A2# ”

!  Supports that an index covers a whole query
!  Index on (Y,X) can answer �SELECT X FROM table WHERE

Y=const�

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-38

Which Types of Indexes are available?
!  Tree-based Indexes: B+-Tree

! Very flexible, only indexes to support point
queries, range queries and prefix searches

!  Hash-based Indexes
! Fast for equality searches - and that�s it

!  Special Indexes
! Such as Bitmap Indexes for OLAP

or R-Tree for spatial databases

=> More details on disk-based index structures in INFO3404

index entries

Data Records

TREE INDEX

Data Records

h

search value

search value
… HASH INDEX

Found in every
database engine

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-39

Multi-Level Tree Index

!  Locate data records by descending the tree from root to leaf
!  Search cost to find pointer to data row(s) = number of levels in index tree
!  This is logarithmic in theory, but in practice can be considered as a small

constant!
!  Typical index with 2 or 3 levels can support millions of data rows

Most DBMS use B+-tree data structure

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-40

DBMS Comparison: Index Types
DB2

UDB 8.2
Oracle

10g
SQLServer

2008
Sybase

ASE 12.5
Postgres

9
MySQL

5

B+-Tree yes yes yes yes yes yes

Hash Index --- yes --- --- yes MEMORY
tables

Bitmap Index (yes)
(called EVI)

yes
(since v8.1)

Bitmap filter

yes
(in Adaptive IQ)

bitmap scan
 (since v8.1) ---

Specialities R-Tree(*) R-Tree (*) Quad Tree;
fulltext index --- Inverted idx;

GiST
Fulltext
R-Tree

Integrated (Main)
Index no? yes yes yes --- InnoDB

(always PK)

Clustered Index yes yes
(only as so-called index-

organised table)
yes

(every clustered index is
an integrated index)

yes
(a clustered index is
an integrated index)

yes InnoDB
(always PK)

Unique Index yes yes yes yes yes yes

Multi-Column Index yes yes yes yes yes yes

(*) spatial index via extension module

"

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-41

Database Metadata
!  Data dictionary (also called system catalog) stores metadata such as:
!  Information about relations

!  names of relations
!  names and types of attributes of each relation
!  names and definitions of views
!  integrity constraints

!  User and accounting information, including passwords
!  Statistical and descriptive data

!  number of tuples in each relation
!  Physical file organization information

!  How relation is stored (sequential/hash/…)
!  Physical location of relation

!  (operating system file names or disk addresses etc)

!  Information about indices
!  Typically stored as a set of relations (e.g. Oracle: USER_TABLES etc.)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-42

INFORMATION_SCHEMA
!  SQL-92 standard for database meta-data: INFORMATION_SCHEMA

!  Supported by many DBMS such as SQL Server, MySQL, PostgreSQL,
(but not Oracle)

!  INFORMATION_SCHEMA.*
! .Schemata!
! .Tables!
! .Views!
! .Columns!
! .Statistics!
! .Table_Constraints!
! .Referential_Constraints!
! .Check_Constraints!
! .Triggers!
! .User_Privileges!
! …! cf: http://www.postgresql.org/docs/9.2/interactive/information-schema.html

 http://dev.mysql.com/doc/refman/5.0/en/information-schema.html
 http://msdn.microsoft.com/en-us/library/ms186778.aspx

Note:
INFORMATION_SCHEMA.Indexes  
not part of the standard (because
CREATE INDEX is not in SQL-92)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-43

This Week�s Agenda
!  Overview of the Database Storage Layer
!  Indexing
!  Choosing an Index

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-44

Understanding the Workload
!  For each query in the workload:

!  Which relations does it access?
!  Which attributes are retrieved?
!  Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?

!  For each update in the workload:
!  Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?
!  The type of update (INSERT/DELETE/UPDATE), and the attributes that

are affected.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-45

Choices of Indexes
!  What indexes should we create?

!  Which relations should have indexes? What field(s) should be the
search key? Should we build several indexes?

!  For each index, what kind of an index should it be?
!  Clustered? Hash or Tree?

!  How should the indexes be created?
!  Separate tablespace? Own disk?
!  Fillfactor for index nodes?

Choices of Indexes (cont�d)
!  One approach: Consider the most important queries in turn.

Consider the best plan using the current indexes, and see if
a better plan is possible with an additional index. If so,
create it.
! For now, we discuss simple 1-table queries.

!  Before creating an index, must also consider the impact on
updates in the workload!
!  Trade-off: Indexes can make queries go faster, updates slower.

Require disk space, too.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-46

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-47

Index Selection Guidelines
!  Attributes in WHERE clause are candidates for index keys.

!  Exact match condition suggests hash index.
!  Range query only supported by tree index types.

!  Clustering is especially useful for range queries; can also help on equality queries
if there are many duplicates.

!  Multi-attribute search keys should be considered when a WHERE clause
contains several conditions.
!  Order of attributes is important for range queries.
!  Such indexes can sometimes enable index-only strategies for important

queries (so-called covering index).
!  For index-only strategies, clustering is not important!

!  Try to choose indexes that benefit as many queries as possible. Since
only one index can be clustered per relation, choose it based on
important queries that would benefit the most from clustering.

!  Create indexes in own tablespace on separate disks

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-48

Choosing an Index
!  An index should support a query of the application that has

a significant impact on performance
! Choice based on frequency of invocation, execution time, acquired

locks, table size

!  Example 1:
 SELECT E.Id

 FROM Employee E
 WHERE E.Salary < :upper AND E.Salary > :lower

! This is a range search on Salary.
! Since the primary key is Id, it is likely that there is a clustered, main

index on that attribute that is of no use for this query.
! Choose a secondary, B+ tree index with search key Salary

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-49

Covering Index
!  Goal: Is it possible to answer whole query just from an index?
!  Covering Index - an index that contains all attributes

required to answer a given SQL query:
! all attributes from the WHERE filter condition
!  if it is a grouping query, also all attributes from GROUP BY & HAVING
! all attributes mentioned in the SELECT clause

!  Typically a multi-attribute index (Q: why �typically�?)
! Order of attributes is important: Prefix of the search key must be the

attributes from the WHERE (Q: why?)

!  Example:
! For query on previous slide it is (,)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-50

Choosing an Index (cont�d)
!  Example 2:

 SELECT T.studId
 FROM Transcript T
 WHERE T.grade = :grade

!  This is an equality search on grade.
!  We know the primary key is (studId, semester, uosCode)

!  It is likely that there is a main, clustered index on these PK attributes
! but it is of no use for this query…

!  Hence: Choose a secondary, B+ tree index (or hash index)
with search key Grade
! Again: a covering index with composite search key (grade, studId)

would allow to answer complete query out of index
!  but then only as B-Tree index…

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-51

Choosing an Index (cont�d)
!  Example 3:

 SELECT T.uosCode, T.grade
 FROM Transcript T
 WHERE T.studId = :id AND T.semester = �Sem1�

!  This is an equality search on studId and semester.
!  If the primary key is (studId, semester, uosCode), it is likely that there is

a main, clustered index on these sequence of attributes
!  If the main index is a B+ tree, it can be used for this search

(requested attributes are a prefix of the search key)
!  If the main index is a hash index, it cannot be used for this query.

Then choose a secondary, B+ tree or hash index either with search key
studId (since semester is not as selective as studId) or with a composite
search key on (studId, semester)

!  Suppose the primary key is (uosCode, studId, semester).
!  Then the main index is of no use (independent of whether it is a hash or a B+ tree).

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-52

Choosing an Index (cont�d)
!  Example 4:

 SELECT T.uosCode, COUNT(*)
 FROM Transcript T
 WHERE T.year = 2009 AND T.semester = �Sem1�
 GROUP BY T.uosCode

!  This is a group-by query with an equality search on year and semester.
!  If the primary key is (studId, year, semester, uosCode), it is likely that

there is a primary (clustered) index on these sequence of attributes
!  But the search condition is on year and semester => must be prefix!
!  Hence PK index not of use
!  Covering INDEX: (year, semester, uosCode)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-53

Index Tuning Wizards
!  Many modern DBMS have a tuning advisor component

! SQL Server
!  IBM DB2
! Oracle
! …

!  Make recommendations on index (Work: materialized views)
based on given SQL commands / workload

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-54

Lessons Learned this Week
!  Physical Data Organisation

! Core Problem: Persistency requires disks, but those are SLOW
! Several physical design alternatives possible for same logical schema

!  Understanding of the concept of an Index
! Efficient access to single tuples or even ranges based on search keys
! One primary, but several secondary indices possible per relation
! single- vs. multi-attribute indices, clustered vs. unclustered indices

!  Practical experience with indexing a relational database
! How to suggest appropriate indexes for a given SQL workload
! Awareness of the trade-off between SQL query performance and

indexing costs (updates)

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-55

References
!  Kifer/Bernstein/Lewis (2nd edition)

!  Chapter 9 (9.1-9.4)
!  Chapter 12 (database tuning)
!  Kifer/Bernstein/Lewis gives a good overview of indexing and especially on

how to use them for database tuning. This is the focus for INFO2120 too.
!  Ramakrishnan/Gehrke (3rd edition - the ‘Cow’ book)

!  Chapter 8
!  The Ramakrishnan/Gehrke is very technical on this topic, providing a lot of

insight into how disk-based indexes are implemented. We only need the
overview here (Chap8); technical details are covered in info3404.

!  Ullman/Widom (3rd edition - �1st Course in Databases�)
!  Chapter 8 (8.3 onwards)
! Mostly overview, but cost model of indexing goes further than we discuss

here in the lecture

!  [Oracle 10g Database Concepts, Chap. 5.4]
Oracle Corporation: Oracle 10g Documentation, Database Concepts.

INFO2120/2820 & COMP5138 "Database Systems I" - 2013 (U. Röhm) 10-56

Next Week
!  OLAP and Data Warehousing

!  Issues and the ETL process
! Star Schema
! CUBE and ROLLUP Operators
! ROLAP / MOLAP

!  Readings:
! Kifer/Bernstein/Lewis book, Chapter 17 (up-to 17.7)
! or alternatively (if you prefer those books):

!  Ramakrishnan/Gehrke (Cow book), Chapter 25

