
	
	
	
	
	
	
	
	
	 	

flex In A Nutshell	

	
flex is a fast lexical analyzer generator.	 You specify the scanner you want in the form	
of patterns to match and actions to apply for each token.	 	 flex takes your specification	
and generates a combined NFA to recognize all your patterns, converts it to an	
equivalent DFA, minimizes the automaton as much as possible, and generates C code	
that will implement it.	 	 flex is similar to another tool, lex, designed by Lesk and	
Schmidt, and bears many similarities to it.	 While we will use flex in the course, almost	
all features we use are also present in the original lex.	
	
This handout is designed to give you a quick introduction to the flex tool.	 This should	
serve as a useful reference for the first programming assignment.	 However, you should	
be aware that in order to complete the first assignment, you may need to use some more	
advanced features of flex that aren't covered here.	 To learn more about flex, run info	
flex, or read the documentation at http://flex.sourceforge.net/manual/.	
	
How It Works	
flex is designed for use with C code and generates a scanner written in C.	 The scanner	
is specified using regular expressions for patterns and C code for the actions. The	
specification files are traditionally identified by their .l extension.	 You invoke flex on	
a .l file and it creates lex.yy.c, a source file containing a wad of unrecognizable C	
code that implements a FA encoding all your rules and including the code for the actions	
you specified.	 The file provides an extern function yylex() that will scan one token.	
You compile that C file normally, link with the lex library, and you have built a	
scanner! The scanner reads from stdin and writes to stdout by default.	
	

% lex myFile.l	 creates lex.yy.c containing C code for scanner	
% gcc -o scan lex.yy.c -ll	 compiles scanner, links with lex lib	
% ./scan	 executes scanner, will read from stdin	

	
Linking with the lex library provides a simple main that will repeatedly calls yylex	
until it reaches EOF. You can also compile and link the scanner into your project and use	
your own main to control when tokens are scanned. The Makefiles we provide for the	
projects will execute the compilation steps for you, but it is worthwhile to understand	
the steps required.	

	
	
	
2	

	
A flex Input File	
flex input files are structured as follows:	
	

%{	
Declarations	
%}	
Definitions	
%%	
Rules	
%%	
User subroutines	

	
The optional Declarations and User subroutines sections are used for ordinary C	
code that you want copied verbatim to the generated C file.	 Declarations are copied to	
the top of the file, user subroutines to the bottom. The optional Definitions section is	
where you specify options for the scanner and can set up definitions to give names to	
regular expressions as a simple substitution mechanism that allows for more readable	
entries in the Rules section that follows.	 The required Rules section is where you	
specified the patterns that identify your tokens and the action to perform upon	
recognizing each token.	
	
flex Rules	
A rule has a regular expression (called the pattern) and an associated set of C statements	
(called the action). The idea is that whenever the scanner reads an input sequence that	
matches a pattern, it executes the action to process it.	 This is a substantial generalization	
of regular expressions that allows the tool to be used in many different contexts.	
	
In specifying patterns, flex supports a fairly rich set of conveniences (character classes,	
specific repetition, etc.) beyond our formal language definition of a regular expression.	
These features don't add expressive power, but simply allow you to construct	
complicated patterns more succinctly. The table below shows some operators to give you	
an idea of what is available. For more details, see the web or man pages.	
	

Character classes	 [0-9]	 This means alternation of the characters in the	
range listed (in this case: 0|1|2|3|4|5|6|7|8|	
9). More than one range may be specified, e.g.	
[0-9A-Za-z] as well as specifying individual	
characters, as with	 [aeiou0-9].	

Character exclusion	 ^	 The first character in a character class may be ^ to	
indicate the complement of the set of characters	
specified.	 For example, [^0-9] matches any	
non-digit character.	

Arbitrary character	 .	 The period matches any single character except	
newline.	

Single repetition	 x?	 0 or 1 occurrence of x.	

	
	
	

3	
	

Non-zero repetition	 x+	 x repeated one or more times; equivalent to xx*.	
Specified repetition	 x{n,m}	 x repeated between n and m times.	

Beginning of line	 ^x	 Match x at beginning of line only.	

End of line	 x$	 Match x at end of line only.	

Context-sensitivity	 ab/cd	 Match ab but only when followed by cd. The	
lookahead characters are left in the input stream	
to be read for the next token.	

Literal strings	 "x"	 This means x even if x would normally have	
special meaning.	 Thus, "x*" may be used to	
match x followed by an asterisk. You can turn off	
the special meaning of just one character by	
preceding it with a backslash, .e.g. \. matches	
exactly the period character and nothing more.	

Definitions	 {name}	 Replace with the earlier defined pattern called	
name. This kind of substitution allows you to re-	
use pattern pieces and define more readable	
patterns.	

	
	
As the scanner reads characters from the file, it will gather them until it forms the	
longest possible match for any of the available patterns. If two or more patterns match	
an equally long sequence, the pattern listed first in the file is used.	
	
The code that you include in the actions depends on what processing you are trying to	
do with each token. Perhaps the only action necessary is to print the matching token,	
add it to a table, or perhaps ignore it in the case of white space or comments. For a	
scanner designed to be used by a compiler, the action will usually record the token	
attributes and return a code that identifies the token type.	
	
flex Global Variables	
The token-grabbing function yylex takes no arguments and returns an integer. Often	
more information is needed about the token just read than that one integer code. The	
usual way information about the token is communicated back to the caller is by having	
the scanner set the contents of a global variable which can be read by the caller. After	
counseling you for years that globals are absolute evil, we reluctantly sanction their	
limited use here, because our tools require we use them. Here are the specific global	
variables used:	
	

•	 yytext is a null-terminated string containing the text of the lexeme just	
recognized as a token. This global variable is declared and managed in the	
lex.yy.c file. Do not modify its contents. The buffer is overwritten with each	

	
	
	

4	
	

subsequent token, so you must make your own copy of a lexeme you need to	
store more permanently.	

•	 yyleng is an integer holding the length of the lexeme stored in yytext. This	
global variable is declared and managed in the lex.yy.c file. Do not modify its	
contents.	

•	 yylval is the global variable used to store attributes about the token, e.g. for an	
integer lexeme it might store the value, for a string literal, the pointer to its	
characters and so on.	 This variable is declared to be of type YYSTYPE, and is	
usually a union of all the various fields needed for different token types. If you	
are using a parser generator (such as yacc or bison), it will define this type for	
you, otherwise, you must provide the definition yourself.	 Your scanner actions	
should appropriately set the contents of the variable for each token.	

•	 yylloc is the global variable that is used to store the location (line and column)	
of the token.	 This variable is declared to be of type YYLTYPE.	 Again, the parser	
generator can provide this or it may be your responsibility.	 Your scanner actions	
should appropriately set the contents of the variable for each token.	

	
Example 1	
Here is a simple and complete specification for a scanner that replaces all numbers in a	
stream of text with a question mark.	 It might be useful, for example, if you were a	
particularly unscrupulous accountant:	
	

%%	
[0-9]+	 printf("?");	
.	 ECHO;	

	
The first %% marks the beginning of the rules section, the only section required in the	
input file.	 The pattern for the first rule matches any sequence of digits and the	
associated action prints a question mark instead of the number itself.	 The second rule	
matches any remaining character and uses the standard action ECHO (which just prints	
the character unchanged).	 To build and run this program, you could use the following	
	

% flex hide-digits.l	
% gcc -o hide-digits lex.yy.c –ll	
% ./hide-digits	

... at this point anything you type, the scanner echoes after ...	

... replacing numbers with question-marks	 ...	
	
Example 2	
The following flex input file has all three sections: a definitions section (when you can	
define substitutions, set up global variables, etc.), the rules section, and the user	
subroutines section (where you can define helper functions).	 This function includes its	
own main rather than using the one supplied by the flex library.	 What does this	
program do?	

	
	
	
5	

	
	
%{	

int numChars = 0, numWords = 0, numLines = 0;	
%}	

	
%%	

	
\n	 {numLines++; numChars++;}	
[^ \t\n]+	 {numWords++; numChars += yyleng;}	
.	 {numChars++;}	

	
%%	

	
int main() {	

yylex();	
printf("%d\t%d\t%d\n", numChars, numWords, numLines);	

}	
	
You can build and execute this scanner from the command-line as follows:	
	

% flex count.l	
% gcc -o count lex.yy.c –ll	
% ./count < count.l	
% 243	 34	 17	

	
	
Example 3	
The following shows an excerpt of a scanner configured for use in a compiler.	 When the	
scanner finds a token, it stores information about that token in the global variable	
yylval, then returns predefined a token code to inform the compiler of the token type	
just scanned. There's obviously a lot more that needs to be here, but that's what you get	
to do for your first programming project!	
	

%%	
[+>;]	 { return yytext[0]; /* use ASCII code for single-char token */}	
"for"	 { return T_For;	 }	
[0-9]+	 { yylval.integerConstant = atoi(yytext);	

return T_IntConstant; }	
[a-z]+	 { yylval.identifier = strdup(yytext);	

return T_Identifier; }	
	
	
Bibliography	

The Flex Project. “Lexical Analysis with Flex.”	 Accessed Online, 19 Jun 2011.	 URL:	
http://flex.sourceforge.net/manual/	

T. Mason, D. Brown, lex & yacc.	 Sebastopol, CA: O'Reilly & Associates, 1990.	

