
	
	
	
	
	
	
	
	
	 	

Programming Project 1: Lexical Analysis	
	
The Goal	
In the first programming project, you will get your compiler off to a great start by	
implementing the lexical analyzer.	 For the first task of the front-end, you will use flex	
to create a scanner for the Decaf programming language. Your scanner will transform	
the source file from a stream of bits and bytes into a series of meaningful tokens	
containing information that will be used by the later stages of the compiler.	
	
This is a fairly straightforward assignment and most students don’t find it too time-	
consuming.	 However, we are giving you more than a week to work on it.	 Don’t let that	
lull you into procrastinating.	 Most of the work comes in figuring out how flex works.	
If you’ve never really played with flex, then start sooner than later so you don’t find	
yourself using a late day on the easiest assignment of the quarter.	 Once you get up to	
speed, things should go relatively smoothly.	
	
	
	
Decaf Lexical Structure	
The handout on the Decaf specification contains a full description of the	
lexical structure of Decaf under the section “Lexical Considerations.”	 Your job in this	
assignment will be to write a scanner that implements this lexical specification.	
	
When writing your scanner, you will need to handle conversions from integer and real-	
valued literals into integer and real-valued numeric data.	 That is, if you encounter the	
sequence of characters 3.1415E+3, while scanning the input you should convert this	
into a double with this value.	 Similarly, when seeing 137 you should convert it to an	
int.	 To save you some time and energy, you may want to use the strtol or strtod	
functions to do these conversions.	 You can learn more about strtol and strtod by	
typing man strtol or man strtod.	 Alternatively, if you're familiar with the C++	
stringstream type, feel free to use that as well.	 You may assume that any numeric	
literal, whether integer or real, can be converted to the appropriate type without errors,	
so don't worry about literals that overflow or underflow.	
	
Decaf adopts the two types of comments available in C++.	 A single-line comment starts	
with // and extends to the end of the line.	 Multi-line comments start with /* and end	
with the first subsequent */.	 Any symbol is allowed in a comment except the sequence	

	
	
	
	
	
	
	
*/ which ends the current comment.	 Multi-line comments do not nest.	 Your scanner	
should consume any comments from the input stream and ignore them.	 If a file ends	
with an unterminated comment, the scanner should report an error.	
	
Recall that the following operators and punctuation characters are used by Decaf:	
	

+ - * / %	 < <= > >= = == != && || ! ; , . [] () {	 } []	
	
Note that [,], and [] are three different tokens and that for the [] operator (used to	
declare a variable of array type), as well as the other two-character operators, there must	
not be any space in between the two characters.	 Each single-character operator has a	
token type equal to its ASCII value, while the multicharacter operators have named	
token types associated with them.	 For example, the token type for [] is T_Dims, while	
|| has token type T_Or.	
	
Using flex	
Inspect the CS131b web site/piazza.	 You’ll find links to various flex	 resources.	 	
We may not cover all the details of the tools in lecture, so you'll forage in the	
online docs to learn what you need to know.	 A quick way to get help is using GNU	
info.	 (Try "info flex")	
	
flex is not exactly user friendly.	 If you put a space or newline in the wrong place, it	
will often print "syntax error" with no line number or hint of what the true problem is.	 It	
may take some delving into the manual, a little experimentation, and some patience to	
learn its shortcomings.	 Here are a few suggestions to help keep you sane:	
	

•	 Be careful about spaces within patterns (it’s easy to accidentally allow a space to	
be interpreted as part of the pattern or signal the end of pattern prematurely if	
you aren’t careful).	

•	 Never put newlines between a pattern and an action.	
•	 When in doubt, parenthesize within the pattern to ensure you are getting the	

precedence you intend.	
•	 Enclose each action in curly braces (although not required for a single-line action,	

you're better safe than sorry).	
•	 Use the definitions section to define pattern substitutions (names like Digit,	

Exponent, etc.). It makes for much more readable rules that are easier to modify,	
extend, and debug.	

•	 You must put curly braces around the definition name when you are using it in	
another definition or a pattern; without them it will only match the literal name.	

	
	
	
	
	
	
	
Starter files	
The starting files can be found in piazza.	 The	 starting p1 project contains the following files
(the boldface entries are the ones you	 will need to modify):	
	

Makefile	 builds scanner	
main.cc	 main for scanner	
scanner.h	 type definitions and prototype declarations for scanner	
scanner.l	 starting scanner skeleton	
errors.h/.cc	 error messages you are to use	
utility.h/.cc	 interface/implementation of various utility functions	
samples/	 directory of test input files	

	
Copy the entire directory to your home directory.	 Your first order of business is to read	
through all the files to learn the lay of the land as well as to absorb the helpful hints	
contained in the files.	
	
You should not modify scanner.h, errors.h/.cc or main.cc since our grading	
scripts depend on your output matching our defined constants and behavior.	 You may	
(but don't need to) modify utility.h/.cc.	 You will definitely need to modify	
scanner.l.	
	
You may use our sample Makefile as a start to build the project. The Makefile has a	
target to build the dcc executable.	 dcc must read input from stdin; therefore, you can	
use standard UNIX file redirection to read from a file.	 For example, to invoke your	
compiler (well, your scanner) on a particular input file, you would use:	
	

% ./dcc < samples/t1.decaf	
	
Take care that comment characters inside string literals don't get misidentified as	
comments.	 If a file ends with an unclosed multi-line comment, report an error via a call	
to one of the methods in the ReportError class.	 In order to match our output exactly	
(which is important for our testing code), please use the standard error messages	
provided in errors.h.	
	
Scanner implementation	
The scanner.l lex input file in the starter project is where you’ll do your work.	 The	
yylval global variable is used to record the value for each lexeme scanned and the	
yylloc global records the lexeme position (line number and column). The action for	
each pattern will update the global variables and return the appropriate token code.	
Your goal is to modify scanner.l to	

	
	
	
	
	
	
	

•	 skip over white space;	
•	 recognize all keywords and return the correct token from scanner.h;	
•	 recognize punctuation and single-char operators and return the ASCII value as	

the token;	
•	 recognize two-character operators and return the correct token;	
•	 recognize int, double, bool, and string constants, return the correct token and set	

appropriate field of yylval;	
•	 recognize identifiers, return the correct token and set appropriate fields of yylval;	
•	 record the line number and first and last column in yylloc for all tokens;	
•	 and report lexical errors for improper strings, lengthy identifiers, and invalid	

characters	
	
We recommend adding token types one at a time to scanner.l, testing after each	
addition.	 Be careful with characters that have special meaning to flex such as * and –	
(see docs for how/when to suppress special-ness). The patterns for integers, doubles,	
and strings will require careful testing to make sure all cases are covered (see the man	
pages for strtol/strtod for details on converting strings to numbers). For this	
assignment, you may assume that all integer constants can be represented by a 32-bit	
integer.	 Similarly, you can assume that it is safe to use strtod to convert double	
constants.	
	
Recording the position of each lexeme requires you to track the current line and column	
numbers (you will need global variables) and update them as the scanner reads the file,	
mostly likely incrementing the line count on each newline and the column on each	
token.	 A tab character accounts for 8 columns.	 There is code in the starter file that	
installs a function to be automatically included with each action (that’s much nicer that	
repeating the call everywhere!), and we strongly encourage you to use it for this	
purpose.	
	
String constants do not allow C-style escape sequences.	 For instance, "\" is a perfectly	
valid string in Decaf, even though it would be an open string constant in C or C++.	
	
Lastly, you need to be sure that your scanner reports the various lexical errors.	 The	
action for an error case should call our ReportError class with one of the standard	
error messages provided in errors.h. For each character that cannot be matched to	
any token pattern, report it and continue parsing with the next character.	 If a string	
erroneously contains a newline, report an error and continue at the beginning of the	
next line.	 If an identifier is longer than the Decaf maximum (31 characters), report the	
error, truncate the identifier to the first 31 characters (discarding the rest), and continue.	

	
	
	
	
	
	
	
Testing your work	
In the starting project, there is a samples directory containing various input files and	
matching .out files which represent the expected output.	 You should diff your	
output against ours as a first step in testing.	 Now examine the test files and think about	
what cases aren’t covered.	 Construct some of your own input files to test your scanner	
even more.	 What lexemes look like numbers but aren’t?	 What sequences might confuse	
your processing of comments?	 This is precisely the sort of thought process a compiler	
writer must go through.	 Any sort of input is fair game and you’ll want to be sure yours	
can handle anything that comes its way, correctly tokenizing it if possible or reporting	
some reasonable error if not.	
	
Note that lexical analysis is responsible only for correctly breaking up the input stream	
and categorizing each token by type.	 The scanner will accept syntactically bogus	
sequences such as:	
	

int if array + 4.5 [bool}	
	
In your next two assignments, you'll check input programs for these sorts of errors.	
	
For those of you using vim as your primary editor, be aware that vim automatically	
appends a newline to the end of any file that you create, which might potentially mess	
up some of your test cases.	 If you are editing in the terminal, I would suggest using	
emacs as your editor to avoid this.	
	
General requirements	

•	 Your executable should be named dcc and should require no command-line	
arguments.	 It should process input from stdin, write tokens to stdout, and	
report errors to stderr.	

•	 Compilers are notorious for leaking memory.	 Given that they run once and exit,	
this is not considered much of a problem. We will not examine your programs for	
leaks and not expect them to free dynamically allocated memory.	

•	 When debugging, you may want to run your program in valgrind to confirm	
that your program does not have any memory corruption errors.	 If valgrind	
reports any memory leaks, that's fine, but if you're accidentally reading a garbage	
pointer valgrind will be invaluable in helping pin down your error.	

•	 Avoid manually doing any scanning.	 Although flex exports several functions	
that can let you single-step over the characters of the input file, you should not	
use this functionality.	 Instead, try using flex's other features.	 It's possible to	
complete this assignment without ever manually inspecting the characters of the	
input.	

	
	
	
	
	
	
	
Grading	
This project is worth 10% of your overall course grade.	 Most of the points will be	
allocated for correctness with some consideration for design and readability.	 We will	
run your program through the given test files from the samples directory, as well as	
other tests of our own, using diff -w to compare your output to that of our solution.	
	
Deliverables	
You are to electronically submit your entire project using and electronic submission	
process that I’ll outline shortly.	 Be sure to include your README file, which is your	
chance to explain your design decisions and why you believe your program to be correct	
and robust, as well as describe what to expect from your submission and its error	
handling.	
	
Good Luck!	

