
	

	

	

	

	

	

	

	

	
 	

Programming Project 2: Syntax Analysis	

	

	

The Goal	

This time around you’ll extend your Decaf compiler (at this point it’s nothing more than	

a lexer) to handle the syntax analysis phase, the second task of the front-end, by using	

bison to create a parser.	
 The parser will read Decaf source programs and construct a	

parse tree.	
 If no syntax errors are encountered, your code will print the completed parse	

tree as flat text.	
 At this stage, you aren’t responsible for verifying meaning, just structure.	

The purpose of this project is to familiarize you with the tools and give you experience in	

solving typical problems one encounters when using them to generate a parser.	

	

There are two challenges to this assignment.	
 The first is all about bison—taking your	
 	

parsing knowledge, coming up to speed on how the tools work, and generating a	

Decaf parser. The second challenge will come in familiarizing yourself with our	

provided code for building a parse tree. It's just a starting skeleton to get you going on,
and your job will be to fully flesh it out over the course of the projects.	
 	

My sense is that in the long run you'll be glad to have had our help code, but you'll have to
first invest the time to come up to speed on someone else's code, so be prepared for that in
this project.
	

Due: Thursday, April 25	
 at 11:59 p.m.	

	

Decaf Program Structure	

The reference grammar given in the Decaf language handout defines the official	

grammar specification you must parse.	
 The language supports global variables,	

functions, classes and interfaces, variables of various types including arrays and objects,	

arithmetic and Boolean expressions, constructs such as if, while, and so on. First,	

peruse the grammar specification carefully.	
 Although the grammar is fairly large, most	

of it is not tricky to parse.	

	

In addition to the language constructs already specified for you, you’ll also extend the	

grammar to support C-style post-increment and decrement expressions along with	

switch statements.	

	

	

	

	

	

	

	

Starter files	

The starting files are in piazza.	

As always, be sure to read through the files we give you to understand what we have	

provided.	
 If you have questions, be sure to ask!	
 The p2 project directory contains the	

following files:	

	

Makefile	
 builds project	

main.cc	
 main and its helper functions	

scanner.h	
 declares scanner functions and types	

scanner.l	
 our flex scanner for Decaf	

parser.h	
 declares parser functions and types	

parser.y	
 skeleton of a bison parser for Decaf	

ast.h/.cc	
 interface/implementation of base AST node class	

ast_type.h/.cc	
 interface/implementation of AST type classes	

ast_decl.h/.cc	
 interface/implementation of AST declaration classes	

ast_expr.h/.cc	
 interface/implementation of AST expression classes	

ast_stmt.h/.cc	
 interface/implementation of AST statement classes	

errors.h/.cc	
 error-reporting class to use in your compiler	

location.h	
 utilities for handling locations, yylloc/yyltype	

utility.h/.cc	
 interface/implementation of various utility functions	

samples/	
 directory of test input files	

	

Copy the entire directory to your home directory.	
 Use make to build the project.	
 The	

Makefile provided will produce a parser called dcc.	
 As usual, dcc reads input from	

stdin , writes output to stdout, and writes errors to stderr.	
 You can use standard	

UNIX file redirection to read from a file and/or save the output to a file:	

	

% ./dcc < samples/program.decaf >& program.out	

	

On Tuesday night, we will be releasing our own scanner code as scanner.l.	
 	

Take a	
 look at the code to learn how we did things, as it's always interesting to see how	

different people solve the same problem.	
 You can use our scanner or replace it with	

your own.	
 Until then, you should use the scanner you wrote for the first assignment.	

This delay is mostly so that we don't give out a working solution to the last assignment	

before students using late days have necessarily turned it in.	

	

If you do use your own scanner, you will need to implement a function with the	

following signature in your scanner.l file:	

	

const char* GetLineNumbered(int num);	

	

	

	

	

	

	

	

This function should take in a line number, then hand back the text of the line with that	

number.	
 Our reference scanner provides this function for you, but it wasn't required in	

the first assignment and chances are you did not implement this functionality on your	

own.	
 Consequently, if you want to start early, you can stub out this function by having	

it always return NULL:	

	

const char* GetLineNumbered(int num) {	

return NULL;	

}	

	

If you want to use your scanner in your final submission, that's fine, but be sure that you	

provide a working implementation for this function.	
 The error reporting routines will	

use it to print out really shiny error messages.	

	

Using bison to generate the parser	

•	
 The given parser.y input file contains a very incomplete skeleton which you	

must fill out to accept the correct grammar. Your first task is to add the rules for	

each of the Decaf grammar features.	
 You do not need the actions to build the	

parse tree yet.	
 In fact, it may help to first concentrate on getting the rules written	

and conflicts resolved before you add actions.	
 This is precisely what I did when I	

wrote my own parser.	

•	
 Running bison on an incorrect or ambiguous grammar will report shift/reduce	

errors, useless rules, and reduce/reduce errors.	
 To understand the conflicts being	

reported, scan the generated y.output file that identifies where the difficulties	

lie.	
 Take care to investigate the underlying conflict and what is needed to resolve	

it rather than adding precedence rules like mad until the conflict goes away.	

•	
 Your parser should accept the grammar as given in the Decaf specification	

document, but you can rearrange the productions as needed to resolve conflicts.	

Some conflicts (if-else, overlap in function versus prototype) can be resolved in	

a multitude of ways (re-writing the productions, setting precedence, etc.) and you	

are free to take whatever approach appeals to you.	
 All you need to ensure is that	

you end up with an equivalent grammar.	

•	
 All conflicts and errors should be eliminated, i.e. you should not make use of	

bison’s automatic resolution of conflicts or use %expect to mask them.	
 You’ll	

see messages in y.output like:	
 "Conflict in state X between rule Y and token Z	

resolved as reduce."	
 This is fine—it just means that your precedence directives	

were used to resolve a conflict.	

	

	

	

	

	

	

	

The Parse Tree	

•	
 There are several files of support code (the generic list class, and the five AST files	

with various parse tree node classes). Before you get started on building the parse	

tree, read through these carefully.	
 The code should be fairly self-explanatory.	

Each node has the ability to print itself and, where appropriate, manage its parent	

and lexical location (these will be of use in the later projects). Consider the	

starting code yours to modify and adapt in any way you like.	

	

•	
 We’ve included limited comments to give an overview of the functionality in our	

provided classes, but if you find that you need to know more details, don't be shy	

about opening up the .cc file and reading through the implementation to figure it	

out.	
 You can learn a lot by just tracing through the code, but if you can't seem to	

make sense of it on your own, you can send us email or come to office hours.	

	

•	
 You could add actions for each rule as you go, but I recommend that you wait	

until all rules are debugged and then go back and add actions.	
 The action for	

each rule will be to construct the section of the parse tree corresponding to the	

rule reduced for use in later reductions.	
 For example, when reducing a variable	

declaration, you will combine the Type and Identifier nodes into a VarDecl	

node, to be gathered in a list of declarations within a class or statement block at a	

later reduction.	

	

•	
 Be sure you understand how to use symbol locations and attributes in bison:	

accessing locations using @n, getting/setting attributes using $ notation, setting	

up the attributes union, how attribute types are set, the attribute stack, yylval	

and yylloc, so on.	
 There is additional information on how to do these things	

(and much more) in the on-line references (though everything you see in the	

bison handout should be more than enough.)	

	

•	
 Keep on your toes when assigning and using results passed from other	

productions in bison.	
 If the action of a production forgets to assign $$ or	

inappropriately relies on the default result ($$ = $1), you don’t get warnings or	

errors; instead, you’re rewarded with entertaining runtime nastiness because you	

use some variable you’ve never initialized.	

	

We expect you to match our output on the reference grammar, so be sure to use look at	

our output and make good use of diff -w.	
 At the end of parsing, if no syntax errors	

have been reported, the entire parse tree is printed via an inorder traversal.	
 Our parse	

classes are all configured to properly print themselves in the expected format, so there is	

nothing new you need to do here.	
 If you have wired up the tree in the correct way, the	

printed version should match ours, line for line.	

	

	

	

	

	

	

	

Beyond The Reference Grammar	

Once you have the full grammar from the Decaf spec operational, you have three	

creative tasks to finish off your syntax analysis:	

	

1.	
 Postfix expressions.	
 Add post-increment and decrement expressions:	

	

i++;	

if (i == arr[j]--) j++;	

	

Both of these are unary operators at the same precedence level as unary minus	

and logical not.	
 You only need to support the postfix form, not the prefix.	
 An	

increment or decrement can be applied to any assignable location (i.e. anything	

that has storage).	
 You will need to modify the scanner and parser, and add new	

parse tree nodes for this new construct.	

	

2.	
 Switch statements. Add productions for parsing a C-style switch statement.	

	

	

switch (num) {	

case 1: i = 1;	

case 2: i = 10; break;	

default: Print("hello");	

}	

	

The expression in the switch is allowed to be any expression (as part of later	

semantic analysis, we could verify that it is of integer type).	
 Unlike in C, the curly	

braces after the expression are mandatory.	
 The case labels must be compile-time	

integer constants.	
 Unlike in C, it is required that there is at least one non-	

default case statement in any switch statement.	
 If there is a default case it	

must be listed last.	
 A case contains a sequence of statements, possibly empty.	
 If	

empty, control just flows through to the next case.	
 You will need to modify the	

scanner and parser, and add new parse tree nodes for this new construct.	

	

3.	
 Error handling.	
 If the input is not syntactically valid, the default behavior of a	

bison-generated parser is to call yyerror to print a message and halt parsing.	

In the starter code, we have provided a replacement version of yyerror that	

attempts to print the text of the current line and mark the first troubling token	

using the yylloc information recorded by the scanner like this:	

	

	

*** Error line 18.	

class Cow extends Animal extends Object {	

^^^^^^^	

*** syntax error	

	

	

	

	

	

	

	

This makes for a little clearer error-reporting, but just giving up at the first error is	

not desirable behavior for a compiler, so your task is add in some error-handling.	

	

Before you try implementing anything, we suggest your first experiment with	

your favorite compiler (javac, csc, g++, etc.) with a critical eye to see how parse	

errors are handled.	
 Feed it some syntactically incorrect code and evaluate how	

good a job it does at clearly and accurately reporting the problem.	
 Is the error	

wording clear and specific? Is it helpful?	
 Is it obvious how the compiler continues	

from there? What kind of syntax errors can it recover from gracefully and what	

errors really trip it up?	

	

Given you are now writing your own compiler, you have a chance to personalize	

it to handle your common mistakes!	
 Which keywords do you often misspell,	

what particular differences are there between Decaf and C++/Java that trip you	

up, how would you like these to be handled?	

	

Pick out some simple errors that you think you can tackle and incorporate the use	

of bison's error pseudo-terminal to add some rudimentary error-handling	

capabilities into your own parser.	
 In your README, describe which errors you	

attempt to catch and provide some sample instances that illustrate the errors from	

which your parser can recover.	

	

To receive full credit, your parser must do some error recovery, but our	

expectations for the standard requirements are quite modest.	
 Simple recovery,	

say, at the statement and declaration levels, is enough.	
 We just want you to	

explore and experiment with bison's error handling.	
 Feel free to attempt more	

ambitious error handling and we will credit it as an extension if it’s substantial.	

	

Testing	

In the starting project, there is a samples directory containing various input files and	

matching .out files which represent the expected output.	

	

Although we've said it before, we'll say it again, the provided test files do not test every	

possible case!	
 Examine the test files and think about what cases aren’t covered.	
 Make	

up lots of test cases of your own.	
 Run your parser on several incorrect files to make sure	

it finds their errors.	
 What formations look like valid programs but aren’t?	
 What	

sequences might confuse your processing of expressions or class definitions?	
 How well	

does your error recovery strategy stand up to abuse?	

	

To make life easier, we've provided a utility script test-all.sh that will automatically	

run your generated compiler on all of the files in the samples directory, diffing the	

	

	

	

	

	

	

	

output against our reference solution.	
 If you add your own tests with the .frag or	

.decaf extensions, the testing script should pick them up automatically and run them	

for you.	

	

Remember that syntax analysis is only responsible for verifying that the sequence of	

tokens forms a valid sentence given the definition of the Decaf grammar.	
 Given that our	

grammar is somewhat loose, some apparently nonsensical constructions will parse	

correctly and, of course, we are not yet doing any of the work for verify semantic	

validity (type-checking, declare before use, etc.).	
 The following program is valid	

according to the grammar, but is obviously not semantically valid.	
 It should parse just	

fine, though.	

	

string binky()	

{	

neverdefined b;	

	

if (1.5 * "Stanford")	

b / 4;	

}	

	

Grading	

We expect your programs to accept exactly the reference grammar with the added	

constructs, have no parser conflicts, and have some rudimentary error recovery. We will	

run your program through the given test files from the samples directory as well as	

others of our own.	
 We will compare (diff -w) your output to the output of our	

solution. This project is worth ten percent of your overall grade in the course.	
 Most	

points are allocated for correctness, with the remainder reserved for the write-up of your	

error handling explorations in your README.	

	

Good luck, and have fun!	

