
	

	

	

	

	

	

	

	

	
 	

Project 4: TAC Generation	

	

	

The Goal	

In the final project, you will implement a back end for your compiler that will generate	

code to be executed on the SPIM simulator.	
 Finally, you get to the true product of all	

your labor—running Decaf programs!	

	

This pass of your compiler will traverse the abstract syntax tree, stringing together the	

appropriate TAC instructions for each subtree—to assign a variable, call a function, or	

whatever is needed.	
 Those TAC instructions are then translated into MIPS assembly via	

a translator class we provide that deals with the more grungy details of the machine	

code.	
 Your finished compiler will do code generation for all of the Decaf language	

(with a few minor omissions) as well as reporting link and run-time errors.	

	

Students generally find P4 to be close to P3 in terms of difficulty and time	
 consumption.	
 	

We tried to give you a hand by giving you some of the pieces pre-written	

and littered our code with debug printing and helpful assertions.	
 The debugging can	

be intense at times since you may need to drop down and examine the MIPS assembly	

to sort out the errors.	
 	
 By the time you're done, you'll have a pretty thorough	

understanding of the runtime environment for Decaf programs and will even gain a	

little reading familiarity with MIPS assembly.	
 The back end of the compiler is where	

the systems-specific portion of the work comes in, so this is the project many of you	

have been waiting for.	

	

I think this is definitely the most fun of the projects; it’s an awesome feeling when you	

finally get to the stage where you can compile Decaf programs and execute them.	

	

	

Starter Files	

The starting files are in Piazza resources. The project	
 contains the following files
(the boldface entries are the ones you are most likely to	

modify, although depending on your strategy you may modify others as well):	

	

	

	

	

	

	

	

Makefile	
 builds project	

main.cc	
 main and some helper functions	

scanner.h/l	
 our scanner interface/implementation	

parser.y	
 bison parser; replace with your own	

ast.h/.cc	
 interface/implementation of base AST node class	

ast_type.h/.cc	
 interface/implementation of AST type classes	

ast_decl.h/.cc	
 interface/implementation of AST declaration classes	

ast_expr.h/.cc	
 interface/implementation of AST expression classes	

ast_stmt.h/.cc	
 interface/implementation of AST statement classes	

codegen.h/.cc	
 interface/implementation of CodeGenerator class	

tac.h/.cc	
 interface/implementation of Tac class and subclasses	

mips.h/.cc	
 interface/implementation of our provided	

TAC-to-MIPS translator	

errors.h/.cc	
 error-reporting class for you to use	

hashtable.h/.cc	
 simple hashtable template class	

list.h	
 simple list template class	

location.h	
 utilities for handling locations, yylloc/yyltype	

utility.h/.cc	
 interface/implementation of our provided utility	

functions	

samples/	
 directory of test input files	

run	
 script to compile and execute result on SPIM	

simulator	

	

Copy the entire directory to your home directory.	
 Use make to build the project.	
 It	

reads input from stdin and you can use standard UNIX file redirection to read from a	

file and/or save the output to a file:	

	

% dcc < samples/program.decaf > program.asm	

	

The output is MIPS assembly that can be executed on the SPIM simulator.	
 The spim	

executable is the same folder .	
 There is also an qtspim visual version that is in
http://pages.cs.wisc.edu/~larus/spim.html. You	
 can either invoke using the full path
or add our bin directory to your path to use the	
 short name.	
 The -file argument to either
allows you to specify a file of MIPS	
 assembly to execute.	

	

For your convenience, we provide a run script that will do the steps in sequence.	
 You	

invoke it with one argument, the path to the Decaf input file:	

	

	

	

3	

	

-- dcc < samples/t1.decaf >tmp.asm	

-- spim -file tmp.asm	

	

SPIM Version 6.3a of January 14, 2001	

Copyright 1990-2000 by James R. Larus (larus@cs.wisc.edu).	

All Rights Reserved.	

See the file README for a full copyright notice.	

Loaded: ./trap.handler	

hello world	

	

As always, the first thing to do is to carefully read all the files we give you and make	

sure you understand the lay of the land.	
 This is particularly important here since there	

is a chunk of new code in the project.	
 A few notes on the starter files:	

	

•	
 You are given the same parse tree node classes as before.	
 Your job is to add	

Emit instructions to the nodes, implemented using the same virtual method	

business you used for Print and Check in previous programming projects.	

You can decide how much of your P3 semantic analysis you want to	

incorporate into your p4 project.	
 We will not test on Decaf programs with	

semantic errors, so you are free to disable or remove your semantic checks so as	

to allow you to concentrate on your new task without the clutter.	

•	
 You are to replace parser.y with your own parser (or our reference parser	

from P3).	
 You should not need to make changes to the parser or rearrange the	

grammar, but you can if you like.	

•	
 We have removed doubles from the types of Decaf for this project.	
 In the	

generated code, we treat bools just like ordinary 4-byte integers, which evaluate	

to 0 or not 0.	
 The only strings are string constants, which will be referred to via	

pointers.	
 Arrays and objects (variables of class type) are also implemented as	

pointers.	
 That means all variables/parameters are 4 bytes in size—that	

simplifies calculating offsets and sizes.	

•	
 Interfaces are removed for code generation to simplify management of the vtable	

and dynamic dispatch.	
 You are not required to generate code for method calls	

on objects upcasted to interface types.	
 However, getting this working (perhaps	

by using multiple vtables and vtable deltas) would be an excellent way to earn	

some extra credit!	

•	
 The CodeGenerator class has a variety of methods that can be called to create	

TAC instructions and append them to the list so far. Each instruction is an object	

of one of the subclasses declared in tac.h.	
 The CodeGenerator supports some	

basic instructions, but you will need to augment it to generate instruction	

sequences for the fancier operations (array indexing, dynamic dispatch, etc.)	

•	
 The Mips class, which we provide, is responsible for converting the list of TAC	

instruction objects as part of final code generation.	
 This class encapsulates the	

details of the machine registers and instruction set and can translate each	

instruction into its MIPS equivalent.	
 You will not likely need to make changes to	

this class.	

	

	

	

4	

	

	

CodeGenerator Implementation	

For the suggested checkpoint, you need to implement code generation for a single main	

function without arrays or objects. Here is a quick sketch of a reasonable order of attack:	

	

•	
 Before you begin, go back over the TAC instructions and examples in the TAC	

Handout to ensure you have a good grasp on TAC.	
 Also read the comments in	

the starter files to familiarize yourself with the CodeGenerator, Tac, and Mips	

classes we provide.	

•	
 Plot out your strategy for assigning locations to variables.	
 A Location object is	

used to identify a variable's runtime memory location, i.e., which segment (stack	

vs. global) and the offset relative to the segment base.	
 Every variable, be it global	

or local, a parameter or a temporary, will need to have an assigned location.	

Figure out how/when you will make the assignment.	
 As a first step, you may	

want to print out each location before doing any code generation and verify all is	

well.	
 If you aren't sure you have the correct locations before you move on to	

generating code, you're setting yourself up for trouble.	
 Once you have assigned	

locations for all variables located within the stack frame, you can calculate the	

frame size for the entire function, and backpatch that size into BeginFunc	

instruction.	

•	
 The label for the main function has be exactly the string "main" in order for spim	

to start execution properly.	

•	
 Start by generating code to load constants and add support for the built-in	

Print so you can verify you've got this part working.	
 Simple variables and	

assignment make a good next step.	

•	
 Generate instructions for arithmetic, relational, and logical operators.	
 Note that	

TAC only has a limited number of operators, so you must simulate the others	

from the available primitives.	
 	
 In the past, students seem tempted toward	

complex implementations involving strange branches and IfZ/Goto, but there	

are simple, straightforward solutions if you think carefully about it.	

•	
 Generating code for the control structures (if/while/for) will teach you about	

labels and branches.	
 Correct use of the break statement should work for exiting	

while and for loops.	

•	
 Take note of what Decaf built-ins are available and how each is used.	
 A few	

trouble spots in the past for students have been making sure Booleans print as	

true/false (not 0/1) and that == on strings compares the characters for	

equality, not just the pointers.	

	

At this point, you should be able to handle any sequence of statements in a single main	

function (not including arrays and objects).	
 	

	

	

	

5	

	

Going on you will finish the rest of code generation, which includes these tasks:	

	

•	
 To handle multiple functions, you now need to assign locations to the function	

parameters and figure out your strategy for assigning function labels.	
 We suggest	

using the function name prefixed with some number of underscores as the function	

label and for classes to further prefix with the class name. You're welcome to use	

any scheme you like as long as it works (i.e., assigns unique labels with no	

confusion).	
 Be careful not to have name collisions with our built-in routines!	
 Also,	

be careful not to use labels that have the same name as a MIPS instruction; if you	

add prefixes to all of the function names, this should not be a problem.	

•	
 Plan your array layout.	
 Remember that your generated code is responsible for	

tracking the array length.	
 Where will you store that?	
 When is the length set?	
 How	

do you access it?	
 Once you have a strategy, implement the built-in NewArray and	

the length() accessor. Add a runtime check that rejects an attempt to create an	

array without a positive number of elements, printing the message	

Decaf runtime error: Array size is <= 0	

and halting execution. (Templates for the error messages are provided in errors.h)	

•	
 Code generation for array elements requires computing offsets and dereferencing.	

Be careful to consider both the case when the array element is being read and the	

case when it is being written. Include a runtime check for array subscripting that	

verifies that the index is in bounds for the array. If an attempt is made to access an	

out-of-bounds element, at runtime you should print the message	

Decaf runtime error: Array subscript out of bounds	

and halt execution.	

•	
 Now consider how you will configure objects in memory— in particularly, think	

through how you will access instance variables and implement dynamic dispatch.	

Sketch some pictures and be sure to consider how inheritance will be supported.	

With your plan in hand, figure out how you will assign locations to instance	

variables and methods. Add code to generate the class vtable.	

•	
 Add implementation for the new built-in, taking care to generate the necessary code	

to set up the new object's vtable pointer.	

•	
 Code generation for instance variable access is somewhat similar to array element	

access in that it involves loads and stores with offsets. It might help to suspend	

semantic processing while testing (i.e. act as though all object fields are public) so	

that you can directly read and write the fields of an object from the main function.	

•	
 Method calls are handled similarly to function calls, but dynamic dispatch and the	

hidden receiver argument adds some complication. Refer back to the earlier object	

pictures on the lecture slides to ensure you understand what code must be	

generated to jump to the correct method implementation. Remember that there is an	

	

	

	

6	

	

additional argument "this" that needs to be passed as a behind-the-scenes parameter	

when generating code for a method call. In the context of a method body, you will	

need to synthesize a location for the identifier "this" at the offset for where the	

parameter can be found.	

•	
 You should add one piece of "linker"-like functionality to verify that there is a	

definition for the global function main. The error reported when the program	

contains no main is:	

*** Linker: function 'main' not defined	

If there is a link error, no code should be emitted.	

	

Hints and suggestions	

Just a few details that didn’t fit anywhere else:	

	

•	
 The debug key tac can be used to skip final MIPS code generation and just print the TAC	

instructions.	
 The debug flag can be set with –d tac when invoking the program or	

programmatically via SetDebugForKey.	
 This is quite useful when you are developing.	

Note that it is not expected that your instruction sequence exactly match ours. Depending	

on your strategy, you can get many functionally equivalent results from different sequences.	

We will not be using diff on the TAC or MIPS sequences, only on the spim output.	

•	
 There are links to documentation and resources for the SPIM simulator on the right	

hand side of the CS143 website.	

•	
 We included comments in the header files to give an overview of the functionality in our	

provided classes but if you find that you need to know more details, don't be shy about	

opening up the .cc file and reading through the implementation to figure it out.	
 You can	

learn a lot by just tracing through the code, but if you can't seem to make sense of it on your	

own, you can send us email or come to office hours.	

	

Testing	

There are various test files that are provided for your testing pleasure in the samples	

directory.	
 For each Decaf input test file, we also have provided the output from	

executing that program’s object code under spim.	
 There are many different correct ways	

of sequencing the instructions, so it’s not helpful to compare TAC/MIPS outputs, but the	

runtime output should match.	
 Be sure to test your program thoroughly, which will	

certainly involving making up your own additional tests.	

	

We will test your compiler only on syntactically and semantically valid input.	
 We will	

expect your final submission to report errors only for the runtime and linking errors	

specified above.	

	

	

	

7	

	

Grading	

The final submission is worth 15% of your overall grade in the course.	
 We will	

thoroughly test your submission against many samples.	
 We will run the object code	

produced your compiler on the spim simulator and diff against the correct runtime	

output.	

	

Once you have finished this assignment, you'll have built a complete working compiler in	

a fast-paced eight weeks.	
 Congratulations – this is no mean feat!	

	

There are many opportunities for extra credit on this assignment, and we'd be more than	

happy to reward you for going above and beyond what's required.	
 Here are a few	

extensions you can add into your code generator that would be really, really cool:	

	

•	
 Support interfaces.	
 We don't ask you to implement interfaces because of the	

complexities involved in adjusting object pointers.	
 However, coding up support for	

interfaces will give you a much deeper understanding of how object layouts work in	

major programming languages.	

•	
 Add optimization.	
 Your generated code needn't be efficient for this assignment,	

but that doesn't mean that you can't try to optimize your generated IR.	
 Any	

optimizations that you do, provided that they are correct, will earn extra credit, as long	

as you document it in your README.	

•	
 Improve our code generator.	
 Our code generator does a reasonable job managing	

registers and the stack, but perhaps you can do better!	
 Feel free to tweak our code	

generator to make it more awesome.	
 For major extra credit and lasting fame, see if	

you can tweak it to output x86 assembly.	

•	
 Support switch and postfix expressions.	
 In p2 we asked you to add in a switch	

statement and postfix ++ and -- operators.	
 Why not add them to the code generator?	

•	
 Support doubles.	
 We removed the double type from this assignment to simplify	

the code generator logic.	
 Try adding them back in!	

	

Good luck!	

