
CS350—Spring 2013

Homework 2

Due Tuesday 23rd April, on paper, at the start of class. This assignment will be graded.

1. von Neumann neighborhood. Recall the definition of von Neumann neighbor-
hood from Levitin Ex 2.3, problem 11.

On the nth iteration, n squares are added to each of the four symmetric sides of the
von Neumann neighborhood. Hence we obtain the following recurrence for S(n), the
total number of squares in the neighborhood after the nth iteration:

S(n) = S(n− 1) + 4n for n > 0 and S(0) = 1.

Solve this recurrence relation using backwards substitution to find a closed-form
formula for the number of cells in the von Neumann neighborhood of range n.

Hint: Make sure that the working for your solution contains at least one instance
of the back-substitution. If it’s at all unclear where a line of your derivation comes
from, add a comment, such as “replace n by n− 1”, or “substitute for S(n− 1)”.
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2. Moore neighborhood. The Moore neighborhood is similar to the von Neumann
neighborhood, except that on each iteration, squares are added on the diagonals as
well. The starting point (0th iteration) is the same; the first three iterations in the
development of the Moore neighborhood are shown here:

Write down a recurrence relation for the total number of squares in the Moore neigh-
borhood after the nth iteration. Also write down the initial condition.

Hint: Be sure to describe your reasoning.

3. Fibonacci. Levitin §2.5 gives two algorithms for computing the Fibonacci numbers.
Algorithm F (n) uses Θ(n) time; Algorithm Fib(n) uses Θ(n) time, but also uses
Θ(n) space.

Improve algorithm Fib(n) so that it uses only Θ(1) space.

Hint: Write out your complete improved algorithm in the same style of presentation
as is used by Levitin for Algorithm Fib(n). Comments should not be necessary if you
use decretive names for the variables.

4. Brute-force Exponentiation. Write down, using Levitin’s pseudocode, a simple,
brute-force algorithm for computing an by multiplying a by itself n times.

What is the efficiency of this algorithm as a function of n? Derive its efficiency as a
function of the number of bits, b, in the binary representation of n.

Hint: If your algorithm uses a loop, then your derivation should be in the form
of a summation; if your algorithm is recursive, your derivation should start with
a recurrence relation. When transforming from n to b, recall the formula for the
number of bits in the binary representation of a number from Levitin Equation 2.1.
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5. Distances. There are several ways to define a distance between two points p and q.
In particular, the Manhattan distance is defined as

dM (p, q) = |p.x− q.x|+ |p.y − q.y|

(a) Prove that dM satisfies the following axioms that every distance function must
satisfy:

i. dM (p, q) ≥ 0 for any two points p and q, and dM (p, q) = 0 if and only if
p = q;

ii. dM (p, q) = dM (q, p); and

iii. dM (p, r) ≤ dM (p, q) + dM (q, r) for any p, q and r

Hint: The questions says “Prove”, so be sure to write a formal proof, using
the definition of dM .

(b) Sketch all the points in the x, y coordinate plane whose Manhattan distance to
the origin (0, 0) is equal to 1. Do the same for the Euclidean distance.

(c) True or false: the answer to an instance of the closest-pair problem does not
depend on which of the two metrics — dE (Euclidean) or dM (Manhattan) — is
used.

Hint: Justify your answer, for example, by providing a counter-example if you
said “false”.
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