CS350 — Spring 2013
Homework 3

Due Tuesday 30th April, on paper, at the start of class. This assignment will not be
graded. You will get credit for turning it in. I will post an answer key, so you will be able
to grade your own work. Keep a copy!

It’s OK to work on this with other members of your workgroup, but each student
should turn in his or her own answers to get credit. The exception is question 4: if you
like pair-programming, then it’s acceptable to work on the implementation with a partner,
and turn in one piece of code for the pair of you.

1. Source-removal algorithm for Topological Sort

(a)
(b)

Prove that a non-empty DAG must have at least one source. Hint: Try a proof
by contradiction.

In class, we considered the problem of finding a source in a DAG with v vertices
and e edges. When the graph is represented by an adjacency matriz, the time
complexity of this operation is O(v?). How would you find a source if the graph
is represented by an adjacency list? Write down your algorithm, and find its
time efficiency. Suppose that your answer is T;.

Develop a decrease-by-one algorithm for topological sorting of a DAG repre-
sented by an adjacency list. It should remove a source, topologically sort the
remaining nodes, and then add the source back as the least element in the
topologically sorted list.

If you did part 1c in the obvious way, your algorithm will have time complexity
(v — 1) Ty, because you will have to remove a source v — 1 times. Modify your
algorithm so that its overall time complexity is linear in the number of vertices
and edges, that is, in O(v + e). Hint: modify your decrease-by-one algorithm
into a decrease-by-variable-amount algorithm.

2. Binary Search. Consider the following sorted array A of keys:

(a)
(b)
(¢)

0o 1 2 3 4 5 6 7 8 9 10 11 12
| 5] 13[19 |23 |28 |34 |46 |49 |57 |89 929497 |

True or false: The binary search algorithm from Levitin §4.4 will make the first
key comparison against A[6].

What is the largest number of comparisons necessary to find any of the keys in
A?

Which keys will require the largest number of comparisons?

(d) Suppose you are searching for key 65. How many comparisons will be made
before you know that it is not present?

3. Binary Search Speedup. Suppose that you have an array of 50000 elements. How
much faster, on average, will it be to search it using binary search, compared to
sequential search. (Show your working.)

4. Generating Permutations. Implement the Johnson-Trotter Algorithm, or the
LexicographicPermute Algorithm, for generating permutations, as described in Lev-
itin §4.3. You can use any programming language, but you should write and run
tests that check

(a) that no permutation is generated more than once,
(b) that exactly n! permutations are generated, and
(c) if you choose LexicographicPermute, that the permutations are indeed in lexi-

cographic order.

Test your algorithm by generating permutations of numbers up to 10. Turn in your
code, and the results of running your tests (that is, the pass/fail /error numbers from
the tests, not all of the permutations!)

