Numerical Methods

Lecture 2

CS 357 Fall 2013

David Semeraro

(Recall) Error

- Absolute error
 |exact value approximate value|
- Relative error

|exact value – approximate value| |exact value|

Rounding and Chopping

• Round or Chop to 3 decimal places.

Number	Rounded	Chopped
0.2397	0.240	0.239
0.2375	0.238	0.237
0.2365	0.236	0.236
0.2344	0.234	0.234

• Impact of arithmetic operations.

$$\tilde{a}_1 = a_1 + \delta_1$$
, $\tilde{a}_2 = a_2 + \delta_2$

Addition:

Abs error =
$$(\tilde{a}_1 + \tilde{a}_2) - (a_1 + a_2) = (\delta_1 + \delta_2)$$

Relative error^{*} = $\frac{\delta_1 + \delta_2}{a_1 + a_2}$

* Relative error becomes infinite if $a_1 = -a_2$

• Impact of arithmetic operations.

$$\tilde{a}_1 = a_1 + \delta_1$$
, $\tilde{a}_2 = a_2 + \delta_2$

Multiplication:

$$\begin{split} \tilde{a}_1 \tilde{a}_2 &= a_1 a_2 \left(1 + \frac{\delta_1}{a_1} \right) \left(1 + \frac{\delta_2}{a_2} \right) \\ &= a_1 a_2 (1 + \rho_1) (1 + \rho_2) \end{split}$$

Where $\rho_i = \frac{\delta_i}{a_i}$ is the relative error in \tilde{a}_i , i = 1,2

• Impact of arithmetic operations.

$$\tilde{a}_1 = a_1 + \delta_1, \tilde{a}_2 = a_2 + \delta_2$$

Multiplication:

If $|\rho_i|$ is small such that $|\rho_1\rho_2| \ll 1$ then $\tilde{a}_1\tilde{a}_2 \cong a_1a_2(1+\rho_1+\rho_2)$

And the relative error becomes

 $\rho_1 + \rho_2$

• Impact of arithmetic operations.

$$\tilde{a}_1 = a_1 + \delta_1$$
, $\tilde{a}_2 = a_2 + \delta_2$

Division:

$$\frac{\tilde{a}_1}{\tilde{a}_2} = \frac{a_1}{a_2} \frac{(1+\rho_1)}{(1+\rho_2)}$$

$$= \frac{a_1}{a_2} \frac{(1+\rho_1)(1-\rho_2)}{1-\rho_2^2}$$

Where $\rho_i = \frac{\delta_i}{a_i}$ is the relative error in \tilde{a}_i , $i = 1,2$

• Impact of arithmetic operations.

$$\tilde{a}_1 = a_1 + \delta_1$$
, $\tilde{a}_2 = a_2 + \delta_2$

Division:

If $|\rho_i|$ is small such that $|\rho_1 \rho_2| \ll 1$ and ${\rho_2}^2 \ll 1$ $\frac{\tilde{a}_1}{\tilde{a}_2} \cong \frac{a_1}{a_2} (1 + \rho_1 - \rho_2)$

And the relative error becomes

 $\rho_1 - \rho_2$

Operation	Relative Error	Absolute Error
Addition	$\frac{\delta_1 + \delta_2}{a_1 + a_2}$	$(\delta_1 + \delta_2)$
Multiplication	$\rho_1 + \rho_2$	$a_1a_2(\rho_1+\rho_2)$
Division	$\rho_1 - \rho_2$	$a_1a_2(\rho_1-\rho_2)$

example

- Evaluate $y = \sqrt{x + \delta} \sqrt{x}$
 - -x = 100 and $\delta = 0.1$
 - using 2 decimals
- Solution

$$\sqrt{x+\delta} = \sqrt{100.1} = 10.0049987 \dots$$
$$\tilde{y} = 10.00 - \sqrt{100} = 0.00^*$$
$$\left|\frac{\tilde{y}-y}{y}\right| = 1 \text{ (catastrophic cancellation)}$$

*The subtraction is carried out exactly.

example

• Rewrite the formula

$$y = \left(\sqrt{x+\delta} - \sqrt{x}\right) \left(\frac{\sqrt{x+\delta} + \sqrt{x}}{\sqrt{x+\delta} + \sqrt{x}}\right)$$
$$= \frac{\delta}{\sqrt{x+\delta} + \sqrt{x}}$$
$$\tilde{y} = \frac{0.1}{10.0 + 10.0} = \frac{0.1}{20.0} = 0.005$$
$$\left|\frac{\tilde{y} - y}{y}\right| = 2.6 \times 10^{-4}$$

• Solve for y...

$$\begin{array}{rcrrr} 0.1036x + & 0.2122y = & 0.7381 \\ 0.2081x + & 0.4247y = & 0.9327 \end{array}$$

- Carry only 3 significant digits of precision in the calculations.
- Repeat with 4 significant digits.

Round to 3 significant digits

Calculating the multiplier.

$$\alpha = \frac{0.208}{0.104} = 2.00$$

Calculating the y term multiplier in 2nd equ.

$$0.425 - (2.00)(0.212) = 0.001$$

$$y = -547$$

Calculating the multiplier with four significant digits.

Rounded value

Calculating the y term multiplier in 2nd equ.

 $0.4247 - (2.009)(0.2122) \approx 0.4247 - 0.4263$ = -0.0016

 $\alpha = \frac{0.2081}{0.1036} \approx 2.009$

Eliminate x-term in 2nd equation

 $\begin{array}{rcrr} 0.1036x + & 0.2122y = & 0.7381 \\ 0.0x - & 0.0016y = & -0.5503 \end{array}$

$$y = -547$$
 ? $y = 343.9$

Small change in coefficients caused a large change in solution.

Infinite precision

2x2 linear system

Intersection of 2 lines in 2D.

Finite precision

2x2 linear system

Intersection of 2 lines in 2D.

Ill conditioning

Well conditioned

Ill conditioned

Taylor Series

- Approximate a function f(x) about a point c.
- We can write the Taylor Series of *f* at the point c:

$$f(x) \approx \sum_{k=0}^{\infty} \frac{(x-c)^k}{k!} f^k(c)$$

• Provided f', f'', f''', \dots exist at c.

Taylor Series for a polynomial

• Example

$$f(x) = 3x^5 - 2x^4 + 15x^3 + 13x^2 - 12x - 5$$

$$c = 2$$

• Evaluate the derivatives of *f* at c and plug into the formula.

$$f(x) \approx 207 + 396(x - 2) + 295(x - 2)^{2} + 119(x - 2)^{3} + 28(x - 2)^{4} + 3(x - 2)^{5}$$

Horner's algorithm (aside)

• Evaluate:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

• Nested Multiplication:

$$p(x) = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + x(a_n)) \dots)$$

$$p(x) = \sum_{i=0}^{n} \left(a_i \prod_{j=1}^{i} x \right)$$

Taylor's theorem for f(x)

If the function f possesses continuous derivatives of orders 0,1,2,...,(n+1) in a closed interval I = [a, b], then for any c and x in I,

$$f(x) = \sum_{k=0}^{n} \frac{f^{k}(c)}{k!} (x-c)^{k} + E_{n+1}$$

Where the error term can be given in the form

$$E_{n+1} = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} (x-c)^{n+1}$$

Taylor series approximation

Approximate
$$f(x) = \frac{1}{(1-x)}$$
.
 $f(x) = f(c) + (x-c)f'(c) + (x-c)^2 f''(c) + \dots$
With $c = 0$

$$\frac{1}{(1-x)} = 1 + x + x^2 + x^3 + \cdots$$

2nd order approximation: $\frac{1}{(1-x)} \approx 1 + x + x^2$

Taylor series approximation

How many terms are required for error to be less than $2.0 \ x \ 10^{-8}$ at x = 1/2?

$$E_{x=1/2} = \sum_{k=n+1}^{\infty} \left(\frac{1}{2}\right)^k = \frac{\left(\frac{1}{2}\right)^{n+1}}{1-1/2}$$

$$= 2 \cdot \left(\frac{1}{2}\right)^{n+1} < 2 \times 10^{-8}$$

Taylor series approximation

$$2 \cdot \left(\frac{1}{2}\right)^{n+1} < 2 \times 10^{-8}$$

$$(n+1)\log_{10}\left(\frac{1}{2}\right) < -8$$

$$(n+1) > \frac{-8}{\log_{10} 1/2} \approx 26.6 \to n > 26$$

Taylor's theorem for f(x)

Mean-Value Theorem

If f is a continuous function on the closed interval [a, b] and possesses a derivative at each point on the open interval (a, b), then

$$f(b) = f(a) + (b - a)f'(\varepsilon)$$

for some ε in (a, b).

Taylor theorem for f(x+h)

If the function f possesses continuous derivatives of orders 0 through n + 1 in [a, b], then for any x in [a, b],

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + E_{n+1}$$

Where h is any value such that x+h is in I and where

$$E_{n+1} = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} h^{n+1}$$

For some ε between x and x + h.

Taylor's theorem for f(x+h)

Big O

- The error term depends on h explicitly and because ε depends on h.
- $E_{n+1} \rightarrow 0$ as $h^{n+1} \rightarrow 0$.
- For large n this convergence is rapid.

$$E_{n+1} = \vartheta(h^{n+1})$$

Taylor series for f(x+h)

Expand
$$\sqrt{1 + h}$$
 in powers of h.
Evaluate $\sqrt{1.00001}$, $\sqrt{0.99999}$
 $f(x) = \sqrt{x}$, with $x = 1$

To 2nd order:

$$\begin{split} \sqrt{1+h} &= 1 + \frac{1}{2}h - \frac{1}{8}h^2 + \frac{1}{16}h^3\varepsilon^{-5/2} \\ &1 < \varepsilon < 1+h \end{split}$$

Taylor Series for f(x+h)

$$h = 10^{-5} \rightarrow \sqrt{1.00001} \approx 1 + 0.5 \times 10^{-5} - 0.125 \times 10^{-10}$$
$$= 1.00000 \ 49999 \ 87500$$

Similarly

$$\begin{split} h &= -10^{-5} \! \rightarrow \sqrt{0.99999} \approx 1 - 0.5 \times 10^{-5} - 0.125 \times 10^{-10} \\ &= 0.999999\,49999\,8750 \end{split}$$

Since $1 < \varepsilon < 1 + h$ the absolute error does not exceed

$$\frac{1}{16}h^3\varepsilon^{-5/2} < \frac{1}{16}10^{-15}$$

The 2nd order approximation retains full 15 decimals of precision.

Alternating Series Theorem

If
$$a_1 \ge a_2 \ge a_3 \ge \dots \ge a_n \ge \dots \ge 0$$
 for all n
and $\lim_{n \to \infty} a_n = 0$, then the alternating series:

$$a_1 - a_2 + a_3 - a_4 + \cdots$$

Converges; that is,

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} (-1)^{k-1} a_k = \lim_{n \to \infty} S_n = S$$