
INFINITE SERIES

KEITH CONRAD

1. Introduction

The two basic concepts of calculus, differentiation and integration, are defined in terms of limits
(Newton quotients and Riemann sums). In addition to these is a third fundamental limit process:
infinite series. The label series is just another name for a sum. An infinite series is a “sum” with
infinitely many terms, such as

(1.1) 1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
+ · · · .

The idea of an infinite series is familiar from decimal expansions, for instance the expansion

π = 3.14159265358979...

can be written as

π = 3 +
1

10
+

4

102
+

1

103
+

5

104
+

9

105
+

2

106
+

6

107
+

5

108
+

3

109
+

5

1010
+

8

1011
+ · · · ,

so π is an “infinite sum” of fractions. Decimal expansions like this show that an infinite series is
not a paradoxical idea, although it may not be clear how to deal with non-decimal infinite series
like (1.1) at the moment.

Infinite series provide two conceptual insights into the nature of the basic functions met in
high school (rational functions, trigonometric and inverse trigonometric functions, exponential and
logarithmic functions). First of all, these functions can be expressed in terms of infinite series, and
in this way all these functions can be approximated by polynomials, which are the simplest kinds
of functions. That simpler functions can be used as approximations to more complicated functions
lies behind the method which calculators and computers use to calculate approximate values of
functions. The second insight we will have using infinite series is the close relationship between
functions which seem at first to be quite different, such as exponential and trigonometric functions.
Two other applications we will meet are a proof by calculus that there are infinitely many primes
and a proof that e is irrational.

2. Definitions and basic examples

Before discussing infinite series we discuss finite ones. A finite series is a sum

a1 + a2 + a3 + · · ·+ aN ,

where the ai’s are real numbers. In terms of Σ-notation, we write

a1 + a2 + a3 + · · ·+ aN =
N∑
n=1

an.

1
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For example,

(2.1)

N∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·+ 1

N
.

The sum in (2.1) is called a harmonic sum, for instance

1 +
1

2
+

1

3
+

1

4
+

1

5
=

137

60
.

A very important class of finite series, more important than the harmonic ones, are the geometric
series

(2.2) 1 + r + r2 + · · ·+ rN =
N∑
n=0

rn.

An example is

10∑
n=0

(
1

2

)n
=

10∑
n=0

1

2n
= 1 +

1

2
+

1

4
+ · · ·+ 1

210
=

2047

1024
≈ 1.999023.

The geometric series (2.2) can be summed up exactly, as follows.

Theorem 2.1. When r 6= 1, the series (2.2) is

1 + r + r2 + · · ·+ rN =
1− rN+1

1− r
=
rN+1 − 1

r − 1
.

Proof. Let

SN = 1 + r + · · ·+ rN .

Then

rSN = r + r2 + · · ·+ rN+1.

These sums overlap in r + · · ·+ rN , so subtracting rSN from SN gives

(1− r)SN = 1− rN+1.

When r 6= 1 we can divide and get the indicated formula for SN . �

Example 2.2. For any N ≥ 0,

1 + 2 + 22 + · · ·+ 2N =
2N+1 − 1

2− 1
= 2N+1 − 1.

Example 2.3. For any N ≥ 0,

1 +
1

2
+

1

4
+ · · ·+ 1

2N
=

1− (1/2)N+1

1− 1/2
= 2− 1

2N
.

It is sometimes useful to adjust the indexing on a sum, for instance

(2.3) 1 + 2 · 2 + 3 · 22 + 4 · 23 + · · ·+ 100 · 299 =

100∑
n=1

n2n−1 =

99∑
n=0

(n+ 1)2n.
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Comparing the two Σ’s in (2.3), notice how the renumbering of the indices affects the expression
being summed: if we subtract 1 from the bounds of summation on the Σ then we add 1 to the
index “on the inside” to maintain the same overall sum. As another example,

32 + · · ·+ 92 =
9∑

n=3

n2 =
6∑

n=0

(n+ 3)2.

Whenever the index is shifted down (or up) by a certain amount on the Σ it has to be shifted up (or
down) by a compensating amount inside the expression being summed so that we are still adding
the same numbers. This is analogous to the effect of an additive change of variables in an integral,
e.g., ∫ 1

0
(x+ 5)2 dx =

∫ 6

5
u2 du =

∫ 6

5
x2 dx,

where u = x + 5 (and du = dx). When the variable inside the integral is changed by an additive
constant, the bounds of integration are changed additively in the opposite direction.

Now we define the meaning of infinite series, such as (1.1). The basic idea is that we look at the
sum of the first N terms, called a partial sum, and see what happens in the limit as N →∞.

Definition 2.4. Let a1, a2, a3, . . . be an infinite sequence of real numbers. The infinite series∑
n≥1 an is defined to be ∑

n≥1
an = lim

N→∞

N∑
n=1

an.

If the limit exists in R then we say
∑

n≥1 an is convergent. If the limit does not exist or is ±∞
then

∑
n≥1 an is called divergent.

Notice that we are not really adding up all the terms in an infinite series at once. We only add
up a finite number of the terms and then see how things behave in the limit as the (finite) number
of terms tends to infinity: an infinite series is defined to be the limit of its sequence of partial sums.

Example 2.5. Using Example 2.3,∑
n≥0

1

2n
= lim

N→∞

N∑
n=0

1

2n
= lim

N→∞
2− 1

2N
= 2.

So
∑
n≥0

1

2n
is a convergent series and its value is 2.

Building on this example we can compute exactly the value of any infinite geometric series.

Theorem 2.6. For x ∈ R, the (infinite) geometric series
∑

n≥0 x
n converges if |x| < 1 and diverges

if |x| ≥ 1. If |x| < 1 then ∑
n≥0

xn =
1

1− x
.

Proof. For N ≥ 0, Theorem 2.1 tells us

N∑
n=0

xn =

{
(1− xN+1)/(1− x), if x 6= 1,

N + 1, if x = 1.
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When |x| < 1, xN+1 → 0 as N →∞, so∑
n≥0

xn = lim
N→∞

N∑
n=0

xn = lim
N→∞

1− xN+1

1− x
=

1

1− x
.

When |x| > 1 the numerator 1 − xN does not converge as N → ∞, so
∑

n≥0 x
n diverges.

(Specifically, the limit is ∞ if x > 1 and the partials sums oscillate between values tending to ∞
and −∞ if x < −1.)

What if |x| = 1? If x = 1 then the N -th partial sum is N + 1 so the series
∑

n≥0 1n diverges

(to ∞). If x = −1 then
∑N

n=0(−1)n oscillates between 1 and 0, so again the series
∑

n≥0(−1)n is
divergent. �

We will see that Theorem 2.6 is the fundamental example of an infinite series. Many important
infinite series will be analyzed by comparing them to a geometric series (for a suitable choice of x).

If we start summing a geometric series not at 1, but at a higher power of x, then we can still get
a simple closed formula for the series, as follows.

Corollary 2.7. If |x| < 1 and m ≥ 0 then∑
n≥m

xn = xm + xm+1 + xm+2 + · · · = xm

1− x
.

Proof. The N -th partial sum (for N ≥ m) is

xm + xm+1 + · · ·+ xN = xm(1 + x+ · · ·+ xN−m).

As N →∞, the sum inside the parentheses becomes the standard geometric series, whose value is
1/(1− x). Multiplying by xm gives the asserted value. �

Example 2.8. If |x| < 1 then x+ x2 + x3 + · · · = x/(1− x).

A divergent geometric series can diverge in different ways: the partial sums may tend to ∞ or
tend to both∞ and −∞ or oscillate between 1 and 0. The label “divergent series” does not always
mean the partial sums tend to ∞. All “divergent” means is “not convergent.” Of course in a
particular case we may know the partial sums do tend to ∞, and then we would say “the series
diverges to ∞.”

The convergence of a series is determined by the behavior of the terms an for large n. If we
change (or omit) any initial set of terms in a series we do not change the convergence of divergence
of the series.

Here is the most basic general feature of convergent infinite series.

Theorem 2.9. If the series
∑

n≥1 an converges then an → 0 as n→∞.

Proof. Let SN = a1 + a2 + · · · + aN and let S =
∑

n≥1 an be the limit of the partial sums SN as
N →∞. Then as N →∞,

aN = SN − SN−1 → S − S = 0.

�

While Theorem 2.9 is formulated for convergent series, its main importance is as a “divergence
test”: if the general term in an infinite series does not tend to 0 then the series diverges. For
example, Theorem 2.9 gives another reason that a geometric series

∑
n≥0 x

n diverges if |x| ≥ 1,

because in this case xn does not tend to 0: |xn| = |x|n ≥ 1 for all n.
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It is an unfortunate fact of life that the converse of Theorem 2.9 is generally false: if an → 0 we
have no guarantee that

∑
n≥0 an converges. Here is the standard illustration.

Example 2.10. Consider the harmonic series
∑
n≥1

1

n
. Although the general term

1

n
tends to 0 it

turns out that ∑
n≥1

1

n
=∞.

To show this we will compare
∑N

n=1 1/n with
∫ N
1 dt/t = logN . When n ≤ t, 1/t ≤ 1/n. Integrating

this inequality from n to n+ 1 gives
∫ n+1
n dt/t ≤ 1/n, so

N∑
n=1

1

n
≥

N∑
n=1

∫ n+1

n

dt

t
=

∫ N+1

1

dt

t
= log(N + 1).

Therefore the N -th partial sum of the harmonic series is bounded below by log(N + 1). Since
log(N + 1)→∞ as N →∞, so does the N -th harmonic sum, so the harmonic series diverges.

We will see later that the lower bound log(N + 1) for the N -th harmonic sum is rather sharp,
so the harmonic series diverges “slowly” since the logarithm function diverges slowly.

The divergence of the harmonic series is not just a counterexample to the converse of Theorem
2.9, but can be exploited in other contexts. Let’s use it to prove something about prime numbers!

Theorem 2.11. There are infinitely many prime numbers.

Proof. (Euler) We will argue by contradiction: assuming there are only finitely many prime numbers
we will contradict the divergence of the harmonic series.

Consider the product of 1/(1 − 1/p) as p runs through all prime numbers. Sums are denoted
with a Σ and products are denoted with a Π (capital pi), so our product is written as∏

p

1

1− 1/p
=

1

1− 1/2
· 1

1− 1/3
· 1

1− 1/5
· · · .

Since we assume there are finitely many primes, this is a finite product. Now expand each factor
into a geometric series: ∏

p

1

1− 1/p
=
∏
p

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·

)
.

Each geometric series is greater than any of its partial sums. Pick any integer N ≥ 2 and truncate
each geometric series at the N -th term, giving the inequality

(2.4)
∏
p

1

1− 1/p
>
∏
p

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·+ 1

pN

)
.

On the right side of (2.4) we have a finite product of finite sums, so we can compute this using the
distributive law (“super FOIL” in the terminology of high school algebra). That is, take one term
from each factor, multiply them together, and add up all these products. What numbers do we get
in this way on the right side of (2.4)?

A product of reciprocal integers is a reciprocal integer, so we obtain a sum of 1/n as n runs over
certain positive integers. Specifically, the n’s we meet are those whose prime factorization doesn’t
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involve any prime with exponent greater than N . Indeed, for any positive integer n > 1, if we
factor n into primes as

n = pe11 p
e2
2 · · · p

er
r

then ei < n for all i. (Since pi ≥ 2, n ≥ 2ei , and 2m > m for any m ≥ 0 so n > ei.) Thus if n ≤ N
any of the prime factors of n appear in n with exponent less than n ≤ N , so 1/n is a number which
shows up when multiplying out (2.4). Here we need to know we are working with a product over
all primes.

Since 1/n occurs in the expansion of the right side of (2.4) for n ≤ N and all terms in the
expansion are positive, we have the lower bound estimate

(2.5)
∏
p

1

1− 1/p
>

N∑
n=1

1

n
.

Since the left side is independent of N while the right side tends to ∞ as N →∞, this inequality
is a contradiction so there must be infinitely many primes. �

We end this section with some algebraic properties of convergent series: termwise addition and
scaling.

Theorem 2.12. If
∑

n≥1 an and
∑

n≥1 bn converge then
∑

n≥1(an + bn) converges and∑
n≥1

(an + bn) =
∑
n≥1

an +
∑
n≥1

bn.

If
∑

n≥1 an converges then for any number c the series
∑

n≥1 can converges and∑
n≥1

can = c
∑
n≥1

an.

Proof. Let SN =
∑N

n=1 an and TN =
∑N

n=1 bn. Set S =
∑

n≥1 an and T =
∑

n≥1 bn, so SN → S
and TN → T as N →∞. Then by known properties of limits of sequences, SN + TN → S + T and
cSN → cS as N →∞. These are the conclusions of the theorem. �

Example 2.13. We have ∑
n≥0

(
1

2n
+

1

3n

)
=

1

1− 1/2
+

1

1− 1/3
=

7

2

and ∑
n≥0

5

4n
= 5

∑
n≥0

1

4n
= 5

1

1− 1/4
=

20

3
.

3. Positive series

In this section we describe several ways to show that an infinite series
∑

n≥1 an converges when
an > 0 for all n.

There is something special about series where all the terms are positive. What is it? The
sequence of partial sums is increasing: SN+1 = SN +aN , so SN+1 > SN for every N . An increasing
sequence has two possible limiting behaviors: it converges or it tends to ∞. (That is, divergence
can only happen in one way: the partial sums tend to ∞.) We can tell if an increasing sequence
converges by showing it is bounded above. Then it converges and its limit is an upper bound on the
whole sequence. If the terms in an increasing sequence are not bounded above then the sequence
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is unbounded and tends to ∞. Compare this to the sequence of partial sums
∑N

n=0(−1)n, which
are bounded but do not converge (they oscillate between 1 and 0).

Let’s summarize this property of positive series. If an > 0 for every n and there is a constant
C such that all partial sums satisfy

∑N
n=1 an < C then

∑
n≥1 an converges and

∑
n≥1 an ≤ C. On

the other hand, if there is no upper bound on the partial sums then
∑

n≥1 an = ∞. We will use
this over and over again to explain various convergence tests for positive series.

Theorem 3.1 (Integral Test). Suppose an = f(n) where f is a continuous decreasing positive
function. Then

∑
n≥1 an converges if and only if

∫∞
1 f(x) dx converges.

Proof. We will compare the partial sum
∑N

n=1 an and the “partial integral”
∫ N
1 f(x) dx.

Since f(x) is a decreasing function,

n ≤ x ≤ n+ 1 =⇒ an+1 = f(n+ 1) ≤ f(x) ≤ f(n) = an.

Integrating these inequalities between n and n+ 1 gives

(3.1) an+1 ≤
∫ n+1

n
f(x) dx ≤ an.

since the interval [n, n+ 1] has length 1. Therefore

(3.2)
N∑
n=1

an ≥
N∑
n=1

∫ n+1

n
f(x) dx =

∫ N+1

1
f(x) dx

and

(3.3)
N∑
n=1

an = a1 +
N∑
n=2

an ≤ a1 +
N∑
n=2

∫ n

n−1
f(x) dx = f(1) +

∫ N

1
f(x) dx.

Combinining (3.2) and (3.3),

(3.4)

∫ N+1

1
f(x) dx ≤

N∑
n=1

an ≤ f(1) +

∫ N

1
f(x) dx.

Assume that
∫∞
1 f(x) dx converges. Since f(x) is a positive function,

∫ N
1 f(x) dx <

∫∞
1 f(x) dx.

Thus by the second inequality in (3.4)

N∑
n=1

an < f(1) +

∫ ∞
1

f(x) dx,

so the partial sums are bounded above. Therefore the series
∑

n≥1 an converges.

Conversely, assume
∑

n≥1 an converges. Then the partial sums
∑N

n=1 an are bounded above (by

the whole series
∑

n≥1 an). Every partial integral of
∫∞
1 f(x) dx is bounded above by one of these

partial sums according to the first inequality of (3.4), so the partial integrals are bounded above
and thus the improper integral

∫∞
1 f(x) dx converges. �

Example 3.2. We were implicitly using the integral test with f(x) = 1/x when we proved the
harmonic series diverged in Example 2.10. For the harmonic series, (3.4) becomes

(3.5) log(N + 1) ≤
N∑
n=1

1

n
≤ 1 + logN.
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Thus the harmonic series diverges “logarithmically.” The following table illustrates these bounds
when N is a power of 10.

N log(N + 1)
∑N

n=1 1/n 1 + logN
10 2.398 2.929 3.303
100 4.615 5.187 5.605
1000 6.909 7.485 7.908
10000 9.210 9.788 10.210

Table 1

Example 3.3. Generalizing the harmonic series, consider∑
n≥1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · ·

where p > 0. This is called a p-series. Its convergence is related to the integral
∫∞
1 dx/xp. Since

the integrand 1/xp has an anti-derivative that can be computed explicitly, we can compute the
improper integral: ∫ ∞

1

dx

xp
=

{
1
p−1 , if p > 1,

∞, if 0 < p ≤ 1.

Therefore
∑

n≥1 1/np converges when p > 1 and diverges when 0 < p ≤ 1. For example,
∑

n≥1 1/n2

converges and
∑

n≥1 1/
√
n diverges.

Example 3.4. The series
∑
n≥2

1

n log n
diverges by the integral test since

∫ ∞
2

dx

x log x
= log log x

∣∣∣∣∞
2

=∞.

(We stated the integral test with a lower bound of 1 but it obviously adapts to series where the
first index of summation is something other than 1, as in this example.)

Example 3.5. The series
∑
n≥2

1

n(log n)2
, with terms just slightly smaller than in the previous

example, converges. Using the integral test,∫ ∞
2

dx

x(log x)
= − 1

log x

∣∣∣∣∞
2

=
1

log 2
,

which is finite.

Because the convergence of a positive series is intimately tied up with the boundedness of its
partial sums, we can determine the convergence or divergence of one positive series from another
if we have an inequality in one direction between the terms of the two series. This leads to the
following convergence test.

Theorem 3.6 (Comparison test). Let 0 < an ≤ bn for all n. If
∑

n≥1 bn converges then
∑

n≥1 an
converges. If

∑
n≥1 an diverges then

∑
n≥1 bn diverges.
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Proof. Since an ≤ bn,

(3.6)

N∑
n=1

an ≤
N∑
n=1

bn.

If
∑

n≥1 bn converges then the partial sums on the right side of (3.6) are bounded, so the partial

sums on the left side are bounded, and therefore
∑

n≥1 an converges. If
∑

n≥1 an diverges then∑N
n=1 an →∞, so

∑N
n=1 bn →∞, so

∑
n≥1 bn diverges. �

Example 3.7. If 0 ≤ x < 1 then
∑

n≥1 x
n/n converges since xn/n ≤ xn so the series is bounded

above by the geometric series
∑

n≥1 x
n, which converges. Notice that, unlike the geometric series,

we are not giving any kind of closed form expression for
∑

n≥1 x
n/n. All we are saying is that the

series converges.
The series

∑
n≥1 x

n/n does not converge for x ≥ 1: if x = 1 it is the harmonic series and if x > 1

then the general term xn/n tends to ∞ (not 0) so the series diverges to ∞.

Example 3.8. The integral test is a special case of the comparison test, where we compare an
with

∫ n+1
n f(x) dx and with

∫ n
n−1 f(x) dx.

Just as convergence of a series does not depend on the behavior of the initial terms of the series,
what is important in the comparison test is an inequality an ≤ bn for large n. If this inequality
happens not to hold for small n but does hold for all large n then the comparison test still works.
The following two examples use this “extended comparison test” when the form of the comparison
test in Theorem 3.6 does not strictly apply (because the inequality an ≤ bn doesn’t hold for small
n).

Example 3.9. If 0 ≤ x < 1 then
∑

n≥1 nx
n converges. This is obvious for x = 0. We can’t

get convergence for 0 < x < 1 by a comparison with
∑

n≥1 x
n because the inequality goes the

wrong way: nxn > xn, so convergence of
∑

n≥1 x
n doesn’t help us show convergence of

∑
n≥1 nx

n.
However, let’s write

nxn = nxn/2xn/2.

Since 0 < x < 1, nxn/2 → 0 as n → ∞, so nxn/2 ≤ 1 for large n (depending on the specific
value of x, e.g, for x = 1/2 the inequality is false at n = 3 but is correct for n ≥ 4). Thus

for all large n we have nxn ≤ xn/2 so
∑

n≥1 nx
n converges by comparison with the geometric

series
∑

n≥1 x
n/2 =

∑
n≥1(
√
x)n. We have not obtained any kind of closed formula for

∑
n≥1 nx

n,
however.

If x ≥ 1 then
∑

n≥1 nx
n diverges since nxn ≥ 1 for all n, so the general term does not tend to 0.

Example 3.10. If x ≥ 0 then the series
∑

n≥0 x
n/n! converges. This is obvious for x = 0. For

x > 0 we will use the comparison test and the lower bound estimate n! > nn/en. Let’s recall that
this lower bound on n! comes from Euler’s integral formula

n! =

∫ ∞
0

tne−t dt >

∫ ∞
n

tne−t dt > nn
∫ ∞
n

e−t dt =
nn

en
.

Then for positive x

(3.7)
xn

n!
<

xn

nn/en
=
(ex
n

)n
.



10 KEITH CONRAD

Here x is fixed and we should think about what happens as n grows. The ratio ex/n tends to 0 as
n→∞, so for large n we have

(3.8)
ex

n
<

1

2

(any positive number less than 1 will do here; we just use 1/2 for concreteness). Raising both sides
of (3.8) to the n-th power, (ex

n

)n
<

1

2n
.

Comparing this to (3.7) gives xn/n! < 1/2n for large n, so the terms of the series
∑

n≥0 x
n/n! drop

off faster than the terms of the convergent geometric series
∑

n≥0 1/2n when we go out far enough.

The extended comparison test now implies convergence of
∑

n≥0 x
n/n! if x > 0.

Example 3.11. The series
∑
n≥1

1

5n2 + n
converges since

1

5n2 + n
<

1

5n2
and

∑
n≥1

1

5n2
converges by

Example 3.3.

Let’s try to apply the comparison test to
∑

n≥1 1/(5n2−n). The rate of growth of the nth term

is like 1/(5n2), but the inequality now goes the wrong way:

1

5n2
<

1

5n2 − n
for all n. So we can’t quite use the comparison test to show

∑
n≥1 1/(5n2 − n) converges (which it

does). The following limiting form of the comparison test will help here.

Theorem 3.12 (Limit comparison test). Let an, bn > 0 and suppose the ratio an/bn has a positive
limit. Then

∑
n≥1 an converges if and only if

∑
n≥1 bn converges.

Proof. Let L = limn→∞ an/bn. For all large n,

L

2
<
an
bn

< 2L,

so

(3.9)
L

2
bn < an < 2Lbn

for large n. Since L/2 and 2L are positive, the convergence of
∑

n≥1 bn is the same as convergence

of
∑

n≥1(L/2)bn and
∑

n≥1(2L)bn. Therefore the first inequality in (3.9) and the comparison test

show convergence of
∑

n≥1 an implies convergence of
∑

n≥1 bn. The second inequality in (3.9) and

the comparison test show convergence of
∑

n≥1 bn implies convergence of
∑

n≥1 an. (Although (3.9)
may not be true for all n, it is true for large n, and that suffices to apply the extended comparison
test.) �

The way to use the limit comparison test is to replace terms in a series by simpler terms which
grow at the same rate (at least up to a scaling factor). Then analyze the series with those simpler
terms.

Example 3.13. We return to
∑
n≥1

1

5n2 − n
. As n→∞, the nth term grows like 1/5n2:

1/(5n2 − n)

1/5n2
→ 1.



INFINITE SERIES 11

Since
∑

n≥1 1/(5n2) converges, so does
∑

n≥1 1/(5n2 − n). In fact, if an is any sequence whose

growth is like 1/n2 up to a scaling factor then
∑

n≥1 an converges. In particular, this is a simpler
way to settle the convergence in Example 3.11 than by using the inequalities in Example 3.11.

Example 3.14. To determine if ∑
n≥1

√
n3 − n2 + 5n

4n6 + n

converges we replace the nth term with the expression√
n3

4n6
=

1

2n3/2
,

which grows at the same rate. The series
∑

n≥1 1/(2n3/2) converges, so the original series converges.

The limit comparison test underlies an important point: the convergence of a series
∑

n≥1 an
is not assured just by knowing if an → 0, but it is assured if an → 0 rapidly enough. That is,
the rate at which an tends to 0 is often (but not always) a means of explaining the convergence of∑

n≥1 an. The difference between someone who has an intuitive feeling for convergence of series and
someone who can only determine convergence on a case-by-case basis using memorized rules in a
mechanical way is probably indicated by how well the person understands the connection between
convergence of a series and rates of growth (really, decay) of the terms in the series. Armed with
the convergence of a few basic series (like geometric series and p-series), the convergence of most
other series encountered in a calculus course can be determined by the limit comparison test if you
understand well the rates of growth of the standard functions. One exception is if the series has a
log term, in which case it might be useful to apply the integral test.

4. Series with mixed signs

All our previous convergence tests apply to series with positive terms. They also apply to series
whose terms are eventually positive (just omit any initial negative terms to get a positive series)
or eventually negative (negate the series, which doesn’t change the convergence status, and now
we’re reduced to an eventually positive series). What do can we do for series whose terms are not
eventually all positive or eventually all negative? These are the series with infinitely many positive
terms and infinitely many negative terms.

Example 4.1. Consider the alternating harmonic series∑
n≥1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

The usual harmonic series diverges, but the alternating signs might have different behavior. The
following table collects some of the partial sums.

N
∑N

n=1(−1)n−1/n
10 .6456
100 .6882
1000 .6926
10000 .6930

Table 2
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These partial sums are not clear evidence in favor of convergence: after 10,000 terms we only
get apparent stability in the first 2 decimal digits. The harmonic series diverges slowly, so perhaps
the alternating harmonic series diverges too (and slower).

Definition 4.2. An infinite series where the terms alternate in sign is called an alternating series.

An alternating series starting with a positive term can be written as
∑

n≥1(−1)n−1an where

an > 0 for all n. If the first term is negative then a reasonable general notation is
∑

n≥1(−1)nan
where an > 0 for all n. Obviously negating an alternating series of one type turns it into the other
type.

Theorem 4.3 (Alternating series test). An alternating series whose n-th term in absolute value
tends monotonically to 0 as n→∞ is a convergent series.

Proof. We will work with alterating series which have an initial positive term, so of the form∑
n≥1(−1)n−1an. Since successive partial sums alterate adding and subtracting an amount which,

in absolute value, steadily tends to 0, the relation between the partial sums is indicated by the
following inequalities:

s2 < s4 < s6 < · · · < s5 < s3 < s1.

In particular, the even-indexed partial sums are an increasing sequence which is bounded above
(by s1, say), so the partial sums s2m converge. Since |s2m+1−s2m| = |a2m+1| → 0, the odd-indexed
partial sums converge to the same limit as the even-indexed partial sums, so the sequence of all
partial sums has a single limit, which means

∑
n≥1(−1)n−1an converges. �

Example 4.4. The alternating harmonic series
∑
n≥1

(−1)n−1

n
converges.

Example 4.5. While the p-series
∑

n≥1 1/np converges only for p > 1, the alternating p-series∑
n≥1(−1)n−1/np converges for the wider range of exponents p > 0 since it is an alternating series

satisfying the hypotheses of the alternating series test.

Example 4.6. We saw
∑

n≥1 x
n/n converges for 0 ≤ x < 1 (comparison to the geometric series)

in Example 3.7. If −1 ≤ x < 0 then
∑

n≥1 x
n/n converges by the alternating series test: the

negativity of xn makes the terms xn/n alternate in sign. To apply the alternating series test we
need ∣∣∣∣ xn+1

n+ 1

∣∣∣∣ < ∣∣∣∣xnn
∣∣∣∣

for all n, which is equivalent after some algebra to

|x| < n+ 1

n

for all n, and this is true since |x| ≤ 1 < (n+ 1)/n.

Example 4.7. In Example 3.10 the series
∑

n≥0 x
n/n! was seen to converge for x ≥ 0. If x < 0

the series is an alternating series. Does it fit the hypotheses of the alternating series test? We need∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ < ∣∣∣∣xnn!

∣∣∣∣
for all n, which is equivalent to

|x| < n+ 1
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for all n. For each particular x < 0 this may not be true for all n (if x = −3 it fails for n = 1 and
2), but it is definitely true for all sufficiently large n. Therefore the terms of

∑
n≥0 x

n/n! are an
“eventually alternating” series. Since what matters for convergence is the long-term behavior and
not the initial terms, we can apply the alternating series test to see

∑
n≥0 x

n/n! converges by just
ignoring an initial piece of the series.

When a series has infinitely many positive and negative terms which are not strictly alternating,
convergence may not be easy to check. For example, the trigonometric series∑

n≥1

sin(nx)

n
= sinx+

sin(2x)

2
+

sin(3x)

3
+

sin(4x)

4
+ · · ·

turns out to be convergent for every number x, but the arrangement of positive and negative terms
in this series can be quite subtle in terms of x. The proof that this series converges uses the
technique of summation by parts, which won’t be discussed here.

While it is generally a delicate matter to show a non-alternating series with mixed signs converges,
there is one useful property such series might have which does imply convergence. It is this: if the
series with all terms made positive converges then so does the original series. Let’s give this idea
a name and then look at some examples.

Definition 4.8. A series
∑

n≥1 an is absolutely convergent if
∑

n≥1 |an| converges.

Don’t confuse
∑

n≥1 |an| with |
∑

n≥1 an|; absolute convergence refers to convergence if we drop

the signs from the terms in the series, not from the series overall. The difference between
∑

n≥1 an
and |

∑
n≥1 an| is at most a single sign, while there is a substantial difference between

∑
n≥1 an

and
∑

n≥1 |an| if the an’s have many mixed signs; that is the difference which absolute convergence
involves.

Example 4.9. We saw
∑

n≥1 x
n/n converges if 0 ≤ x < 1 in Example 3.7. Since |xn/n| = |x|n/n,

the series
∑

n≥1 x
n/n is absolutely convergent if |x| < 1. Note the alternating harmonic series∑

n≥1(−1)n−1/n is not absolutely convergent, however.

Example 4.10. In Example 3.10 we saw
∑

n≥0 x
n/n! converges for all x ≥ 0. Since |xn/n!| =

|x|n/n!, the series
∑

n≥0 x
n/n! is absolutely convergent for all x.

Example 4.11. By Example 3.9,
∑

n≥1 nx
n converges absolutely if |x| < 1.

Example 4.12. The two series ∑
n≥1

sin(nx)

n2
,
∑
n≥1

cos(nx)

n2
,

where the nth term has denominator n2, are absolutely convergent for any x since the absolute
value of the nth term is at most 1/n2 and

∑
n≥1 1/n2 converges.

The relevance of absolute convergence is two-fold: 1) we can use the many convergence tests for
positive series to determine if a series is absolutely convergent, and 2) absolute convergence implies
ordinary convergence.

We just illustrated the first point several times. Let’s show the second point.

Theorem 4.13 (Absolute convergence test). Every absolutely convergent series is a convergent
series.
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Proof. For all n we have

−|an| ≤ an ≤ |an|,
so

0 ≤ an + |an| ≤ 2|an|.
Since

∑
n≥1 |an| converges, so does

∑
n≥1 2|an| (to twice the value). Therefore by the comparison

test we obtain convergence of
∑

n≥1(an + |an|). Subtracting
∑

n≥1 |an| from this shows
∑

n≥1 an
converges. �

Thus the series
∑

n≥1 x
n/n and

∑
n≥1 nx

n converge for |x| < 1 and
∑

n≥0 x
n/n! converges for

all x by our treatment of these series for positive x alone in Section 3. The argument we gave
in Examples 4.6 and 4.7 for the convergence of

∑
n≥1 x

n/n and
∑

n≥1 x
n/n! when x < 0, using

the alternating series test, can be avoided. (But we do need the alternating series test to show∑
n≥1 x

n/n converges at x = −1.)
A series which converges but is not absolutely convergent is called conditionally convergent. An

example of a conditionally convergent series is the alternating harmonic series
∑

n≥1(−1)n−1/n.
The distinction between absolutely convergent series and conditionally convergent series might

seem kind of minor, since it involves whether or not a particular convergence test (the absolute
convergence test) works on that series. But the distinction is actually profound, and is nicely
illustrated by the following example of Dirichlet (1837).

Example 4.14. Let L = 1− 1/2 + 1/3− 1/4 + 1/5− 1/6 + · · · be the alternating harmonic series.
Consider the rearrangement of the terms where we follow a positive term by two negative terms:

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · ·

If we add each positive term to the negative term following it, we obtain

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · ,

which is precisely half the alternating harmonic series (multiply L by 1/2 and see what you get
termwise). Therefore, by rearranging the terms of the alternating harmonic series we obtained a
new series whose sum is (1/2)L instead of L. If (1/2)L = L, doesn’t that mean 1 = 2? What
happened?

This example shows addition of terms in an infinite series is not generally commutative, unlike
with finite series. In fact, this feature is characteristic of the conditionally convergent series, as
seen in the following amazing theorem.

Theorem 4.15 (Riemann, 1854). If an infinite series is conditionally convergent then it can be
rearranged to sum up to any desired value. If an infinite series is absolutely convergent then all of
its rearrangements converge to the same sum.

For instance, the alternating harmonic series can be rearranged to sum up to 1, to −5.673, to
π, or to any other number you wish. That we rearranged it in Example 4.14 to sum up to half
its usual value was special only in the sense that we could make the rearrangement achieving that
effect quite explicit.

Theorem 4.15, whose proof we omit, is called Riemann’s rearrangement theorem. It indicates
that absolutely convergent series are better behaved than conditionally convergent ones. The
ordinary rules of algebra for finite series generally extend to absolutely convergent series but not
to conditionally convergent series.
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5. Power series

The simplest functions are polynomials: c0 + c1x + · · · + cdx
d. In differential calculus we learn

how to locally approximate many functions by linear functions (the tangent line approximation).
We now introduce an idea which will let us give an exact representation of functions in terms of
“polynomials of infinite degree.” The precise name for this idea is a power series.

Definition 5.1. A power series is a function of the form f(x) =
∑

n≥0 cnx
n.

For instance, a polynomial is a power series where cn = 0 for large n. The geometric series∑
n≥0 x

n is a power series. It only converges for |x| < 1. We have also met other power series, like∑
n≥1

xn

n
,
∑
n≥1

nxn,
∑
n≥0

xn

n!
.

These three series converge on the respective intervals [−1, 1), (−1, 1) and (−∞,∞).
For any power series

∑
n≥0 cnx

n it is a basic task to find those x where the series converges. It
turns out in general, as in all of our examples, that a power series converges on an interval. Let’s
see why.

Theorem 5.2. If a power series
∑

n≥0 cnx
n converges at x = b 6= 0 then it converges absolutely

for |x| < |b|.

Proof. Since
∑

n≥0 cnb
n converges the general term tends to 0, so |cnbn| ≤ 1 for large n. If |x| < |b|

then

|cnxn| = |cnbn|
∣∣∣x
b

∣∣∣n ,
which is at most |x/b|n for large n. The series

∑
n≥0 |x/b|n converges since it’s a geometric series

and |x/b| < 1. Therefore by the (extended) comparison test
∑

n≥0 |cnxn| converges, so
∑

n≥0 cnx
n

is absolutely convergent. �

Example 5.3. If a power series converges at −7 then it converges on the interval (−7, 7). We can’t
say for sure how it converges at 7.

Example 5.4. If a power series diverges at −7 then it diverges for |x| > 7: if it were to converge
at a number x where |x| > 7 then it would converge in the interval (−|x|, |x|) so in particular at
−7, a contradiction.

What these two examples illustrate, as consequences of Theorem 5.2, is that the values of x
where a power series

∑
n≥0 cnx

n converges is an interval centered at 0, so of the form

(−r, r), [−r, r), (−r, r], [−r, r]
for some r. We call r the radius of convergence of the power series. The only difference between
these different intervals is the presence or absence of the endpoints. All possible types of interval
of convergence can occur:

∑
n≥0 x

n has interval of convergence (−1, 1),
∑

n≥1 x
n/n has interval of

convergence [−1, 1),
∑

n≥1(−1)nxn/n has interval of convergence (−1, 1] and
∑

n≥1 x
n/n2 (a new

example we have not met before) has interval of convergence [−1, 1].
The radius of convergence and the interval of convergence are closely related but should not be

confused. The interval is the actual set where the power series converges. The radius is simply the
half-length of this set (and doesn’t tell us whether or not the endpoints are included). If we don’t
care about convergence behavior on the boundary of the interval of convergence than we can get
by just knowing the radius of convergence: the series always converges (absolutely) on the inside
of the interval of convergence.
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For the practical computation of the radius of convergence in basic examples it is convenient to
use a new convergence test for positive series.

Theorem 5.5 (Ratio test). If an > 0 for all n, assume

q = lim
n→∞

an+1

an

exists. If q < 1 then
∑

n≥1 an converges. If q > 1 then
∑

n≥1 an diverges. If q = 1 then no
conclusion can be drawn.

Proof. Assume q < 1. Pick s between q and 1: q < s < 1. Since an+1/an → q, we have an+1/an < s
for all large n, say for n ≥ n0. Then an+1 < san when n ≥ n0, so

an0+1 < san0 , an0+2 < san0+1 < s2an0 , an0+3 < san0+2 < s3an0 ,

and more generally an0+k < skan0 for any k ≥ 0. Writing n0 + k as n we have

n ≥ n0 =⇒ an < sn−n0an0 =
an0

sn0
sn.

Therefore when n ≥ n0 the number an is bounded above by a constant multiple of sn. Hence∑
n≥1 an converges by comparison to a constant multiple of the convergent geometric series

∑
n≥1 s

n.
In the other direction, if q > 1 then pick s with 1 < s < q. An argument similar to the previous

one shows an grows at least as quickly as a constant multiple of sn, but this time
∑

n≥1 s
n diverges

since s > 1. So
∑

n≥1 an diverges too.

When q = 1 we can’t make a definite conclusion since both
∑

n≥1 1/n and
∑

n≥1 1/n2 have
q = 1. �

Example 5.6. We give a proof that
∑

n≥1 nx
n has radius of convergence 1 which is shorter than

Examples 3.9 and 4.11. Take an = |nxn| = n|x|n. Then

an+1

an
=
n+ 1

n
|x| → |x|

as n→∞. Thus if |x| < 1 the series
∑

n≥1 nx
n is absolutely convergent by the ratio test. If |x| > 1

this series is divergent. Notice the ratio test does not tell us what happens to
∑

n≥1 nx
n when

|x| = 1; we have to check x = 1 and x = −1 individually.

Example 5.7. A similar argument shows
∑

n≥1 x
n/n has radius of convergence 1 since

|xn+1/(n+ 1)|
|xn/n|

=
n

n+ 1
|x| → |x|

as n→∞.

Example 5.8. We show the series
∑

n≥0 x
n/n! converges absolutely for all x. Using the ratio test

we look at
|xn+1/(n+ 1)!|
|xn/n!|

=
|x|
n+ 1

→ 0

as n → ∞. Since this limit is less than 1 for all x, we are done by the ratio test. The radius of
convergence is infinite.

Power series are important for two reasons: they give us much greater flexibility to define new
kinds of functions and many standard functions can be expressed in terms of a power series.
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Intuitively, if a known function f(x) has a power series representation on some interval around
0, say

f(x) =
∑
n≥0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · ·

for |x| < r, then we can guess a formula for cn in terms of the behavior of f(x). To begin we have

f(0) = c0.

Now we think about power series as something like “infinite degree polynomials.” We know how
to differentiate a polynomial by differentiating each power of x separately. Let’s assume this works
for power series too in the interval of convergence:

f ′(x) =
∑
n≥1

ncnx
n−1 = c1 + 2c2x+ 3c3x

2 + 4c4x
3 + · · · ,

so we expect

f ′(0) = c1.

Now let’s differentiate again:

f ′′(x) =
∑
n≥2

n(n− 1)cnx
n−2 = 2c2 + 6c3x+ 12c4x

2 + · · · ,

so

f ′′(0) = 2c2.

Differentiating a third time (formally) and setting x = 0 gives

f (3)(0) = 6c3.

The general rule appears to be

f (n)(0) = n!cn,

so we should have

cn =
f (n)(0)

n!
.

This procedure really is valid, according to the following theorem whose long proof is omitted.

Theorem 5.9. Any function represented by a power series in an open interval (−r, r) is infinitely
differentiable in (−r, r) and its derivatives can be computed by termwise differentiation of the power
series.

This means our previous calculations are justified: if a function f(x) can be written in the form∑
n≥0 cnx

n in an interval around 0 then we must have

(5.1) cn =
f (n)(0)

n!
.

In particular, a function has at most one expression as a power series
∑

n≥0 cnx
n around 0. And

a function which is not infinitely differentiable around 0 will definitely not have a power series
representation

∑
n≥0 cnx

n. For instance, |x| has no power series representation of this form since
it is not differentiable at 0.

Remark 5.10. We can also consider power series f(x) =
∑

n≥0 cn(x − a)n, whose interval of

convergence is centered at a. In this case the coefficients are given by the formula cn = f (n)(a)/n!.
For simplicity we will focus on power series “centered at 0” only.
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Remark 5.11. Even if a power series converges on a closed interval [−r, r], the power series for
its derivative need not converge at the endpoints. Consider f(x) =

∑
n≥1(−1)nx2n/n. It converges

for |x| ≤ 1 but the derivative series is
∑

n≥1 2(−1)nx2n−1, which converges for |x| < 1.

Remark 5.12. Because a power series can be differentiated (inside its interval of convergence)
termwise, we can discover solutions to a differential equation by inserting a power series with
unknown coefficients into the differential equation to get relations between the coefficients. Then
a few initial coefficients, once chosen, should determine all the higher ones. After we compute the
radius of convergence of this new power series we will have found a solution to the differential
equation in a specific interval. This idea goes back to Newton. It does not necessarily provide us
with all solutions to a differential equation, but it is one of the standard methods to find some
solutions.

Example 5.13. If |x| < 1 then
∑
n≥0

xn =
1

1− x
. Differentiating both sides, for |x| < 1 we have

∑
n≥1

nxn−1 =
1

(1− x)2
.

Multiplying by x gives us ∑
n≥1

nxn =
x

(1− x)2
,

so we have finally found a “closed form” expression for an infinite series we first met back in
Example 3.9.

Example 5.14. If there is a power series representation
∑

n≥0 cnx
n for ex then (5.1) shows cn =

1/n!. The only possible way to write ex as a power series is∑
n≥0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ · · · .

Is this really a valid formula for ex? Well, we checked before that this power series converges for
all x. Moreover, calculating the derivative of this series reproduces the series again, so this series is
a function satisfying y′(x) = y(x). The only solutions to this differential equation are Cex and we
can recover C by setting x = 0. Since the power series has constant term 1 (so its value at x = 0
is 1), its C is 1, so this power series is ex:

ex =
∑
n≥0

xn

n!
.

Loosely speaking, this means the polynomials

1, 1 + x, 1 + x+
x2

2
, 1 + x+

x2

2
+
x3

6
, . . .

are good approximations to ex. (Where they are good will depend on how far x is from 0.) In
particular, setting x = 1 gives an infinite series representation of the number e:

(5.2) e =
∑
n≥0

1

n!
= 1 +

1

2
+

1

3!
+

1

4!
+ · · ·

Formula (5.2) can be used to verify an interesting fact about e.

Theorem 5.15. The number e is irrational.
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Proof. (Fourier) For any n,

e =

(
1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

)
+

(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
=

(
1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

)
+

1

n!

(
1

n+ 1
+

1

(n+ 2)(n+ 1)
+ · · ·

)
.

The second term in parentheses is positive and bounded above by the geometric series

1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · · = 1

n
.

Therefore

0 < e−
(

1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

)
≤ 1

n · n!
.

Write the sum 1 + 1/2! + · · ·+ 1/n! as a fraction with common denominator n!, say as pn/n!. Clear
the denominator n! to get

(5.3) 0 < n!e− pn ≤
1

n
.

So far everything we have done involves no unproved assumptions. Now we introduce the rationality
assumption. If e is rational, then n!e is an integer when n is large (since any integer is a factor
by n! for large n). But that makes n!e− pn an integer located in the open interval (0, 1), which is
absurd. We have a contradiction, so e is irrational. �

We return to the general task of representing functions by their power series. Even when a
function is infinitely differentiable for all x, its power series could have a finite radius of convergence.

Example 5.16. Viewing 1/(1 + x2) as 1/(1− (−x2)) we have the geometric series formula

1

1 + x2
=
∑
n≥0

(−x2)n =
∑
n≥0

(−1)nx2n

when |−x2| < 1, or equivalently |x| < 1. The series has a finite interval of convergence (−1, 1) even
though the function 1/(1 + x2) has no bad behavior at the endpoints: it is infinitely differentiable
at every real number x.

Example 5.17. Let f(x) =
∑

n≥1 x
n/n. This converges for −1 ≤ x < 1. For |x| < 1 we have

f ′(x) =
∑
n≥1

xn−1 =
∑
n≥0

xn =
1

1− x
.

When |x| < 1, an antiderivative of 1/(1− x) is − log(1− x). Since f(x) and − log(1− x) have the
same value (zero) at x = 0 they are equal:

− log(1− x) =
∑
n≥1

xn

n

for |x| < 1. Replacing x with −x and negating gives

(5.4) log(1 + x) =
∑
n≥1

(−1)n−1

n
xn

for |x| < 1. The right side converges at x = 1 (alternating series) and diverges at x = −1. It
seems plausible, since the series equals log(1 + x) on (−1, 1), that this should remain true at the
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boundary: does
∑

n≥1(−1)n−1/n equal log 2? (Notice this is the alternating harmonic series.) We
will return to this later.

In practice, if we want to show an infinitely differentiable function equals its associated power
series

∑
n≥0(f

(n)(0)/n!)xn on some interval around 0 we need some kind of error estimate for the

difference between f(x) and the polynomial
∑N

n=0(f
(n)(0)/n!)xn. When the estimate goes to 0 as

N →∞ we will have proved f(x) is equal to its power series.

Theorem 5.18. If f(x) is infinitely differentiable then for all N ≥ 0

f(x) =
N∑
n=0

f (n)(0)

n!
xn +RN (x),

where

RN (x) =
1

N !

∫ x

0
f (N+1)(t)(x− t)N dt.

Proof. When N = 0 the desired result says

f(x) = f(0) +

∫ x

0
f ′(t) dt.

This is precisely the fundamental theorem of calculus!
We obtain the N = 1 case from this by integration by parts. Set u = f ′(t) and dv = dt. Then

du = f ′′(t) dt and we (cleverly!) take v = t− x (rather than just t). Then∫ x

0
f ′(t) dt = f ′(t)(t− x)

∣∣∣∣t=x
t=0

−
∫ x

0
f ′′(t)(t− x) dt

= f ′(0)x+

∫ x

0
f ′′(t)(x− t) dt,

so

f(x) = f(0) + f ′(0)x+

∫ x

0
f ′′(t)(x− t) dt.

Now apply integration by parts to this new integral with u = f ′′(t) and dv = (x − t) dt. Then

du = f (3)(t) dt and (cleverly) use v = −(1/2)(x− t)2. The result is∫ x

0
f ′′(t)(x− t) dt =

f ′′(0)

2
x2 +

1

2

∫ x

0
f (3)(t)(x− t)2 dt,

so

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

1

2

∫ x

0
f (3)(t)(x− t)2 dt.

Integrating by parts several more times gives the desired result. �

We call RN (x) a remainder term.

Corollary 5.19. If f is infinitely differentiable then the following conditions at the number x are
equivalent:

• f(x) =
∑

n≥0(f
(n)(0)/n!)xn,

• RN (x)→ 0 as N →∞.

Proof. The difference between f(x) and the Nth partial sum of its power series is RN (x), so f(x)
equals its power series precisely when RN (x)→ 0 as N →∞. �
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Example 5.20. In (5.4) we showed log(1 + x) equals
∑

n≥1(−1)n−1xn/n for |x| < 1. What about

at x = 1? For this purpose we want to show RN (1) → 0 as N → ∞ when f(x) = log(1 + x). To
estimate RN (1) we need to compute the higher derivatives of f(x):

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, f (3)(x) =

2

(1 + x)3
, f (4)(x) = − 6

(1 + x)4
,

and in general

f (n)(x) =
(−1)n−1(n− 1)!

(1 + x)n

for n ≥ 1. Therefore

RN (1) =
1

N !

∫ 1

0

(−1)NN !

(1 + t)N+1
(1− t)N dt = (−1)N

∫ 1

0

(1− t)N

(1 + t)N+1
dt,

so

|RN (1)| ≤
∫ 1

0

dt

(1 + t)N+1

=
1

N
− 1

N2N

→ 0

as N →∞. Since the remainder term tends to 0, log 2 =
∑

n≥1(−1)n−1/n.

Example 5.21. Let f(x) = sinx. Its power series is∑
n≥0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

which converges for all x by the ratio test. We will show sinx equals its power series for all x. This
is obvious if x = 0.

Since sinx has derivatives ± cosx and ± sinx, which are bounded by 1, for x > 0

|RN (x)| =
1

N !

∣∣∣∣∫ x

0
f (N+1)(t)(x− t)N dt

∣∣∣∣
≤ 1

N !

∫ x

0
|x− t|N dt

≤ 1

N !

∫ x

0
xN dt

=
xN+1

N !
.

This tends to 0 as N →∞, so sinx does equal its power series for x > 0.
If x < 0 then we can similarly estimate |RN (x)| and show it tends to 0 as N → ∞, but we can

also use a little trick because we know sinx is an odd function: if x < 0 then −x > 0 so

sinx = − sin(−x) = −
∑
n≥0

(−1)n
(−x)2n+1

(2n+ 1)!

from the power series representation of the sine function at positive numbers. Since (−x)2n+1 =
−x2n+1,

sinx = −
∑
n≥0

(−1)n
−x2n+1

(2n+ 1)!
=
∑
n≥0

(−1)n
x2n+1

(2n+ 1)!
,
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which shows sinx equals its power series for x < 0 too.

Example 5.22. By similar work we can show cosx equals its power series representation every-
where:

cosx =
∑
n≥0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

The power series for sinx and cosx look like the odd and even degree terms in the power series
for ex. Is the exponential function related to the trigonometric functions? This idea is suggested
because of their power series. Since ex has a series without the (−1)n factors, we can get a match
between these series by working not with ex but with eix, where i is a square root of −1. We have
not defined infinite series (or even the exponential function) using complex numbers. However,
assuming we could make sense of this then we would expect to have

eix =
∑
n≥0

(ix)n

n!

= 1 + ix− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
+ · · ·

= 1− x2

2!
+
x4

4!
+ · · · i

(
x− x3

3!
+
x5

5!
− · · ·

)
= cosx+ i sinx.

For example, setting x = π would say
eiπ = −1.

Replacing x with −x in the formula for eix gives

e−ix = cosx− i sinx.

Adding and subtracting the formulas for eix and e−ix lets us express the real trigonometric functions
sinx and cosx in terms of (complex) exponential functions:

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
.

Evidently a deeper study of infinite series should make systematic use of complex numbers!
The following question is natural: who needs all the remainder estimate business from Theorem

5.18 and Corollary 5.19? After all, why not just compute the power series for f(x) and find its
radius of convergence? That has to be where f(x) equals its power series. Alas, this is false.

Example 5.23. Let

f(x) =

{
e−1/x

2
, if x 6= 0,

0, if x = 0.

It can be shown that f(x) is infinitely differentiable at x = 0 and f (n)(0) = 0 for all n, so the power
series for f(x) has every coefficient equal to 0, which means the power series is the zero function.
But f(x) 6= 0 if x 6= 0, so f(x) is not equal to its power series anywhere except at x = 0.

Example 5.23 shows that if a function f(x) is infinitely differentiable for all x and the power

series
∑

n≥0(f
(n)(0)/n!)xn converges for all x, f(x) need not equal its power series anywhere except

at x = 0 (where they must agree since the constant term of the power series is f(0)). This is why
there is non-trivial content in saying a function can be represented by its power series on some
interval. The need for remainder estimates in general is important.


