Numerical Methods

CS 357 Fall 2013

David Semeraro

Alternating Series (from last week)

fa, =2a,=>az=-+-=2a, =--+=0forallnand
lim a,, =0, thent he aIternatmg series:
Nn—>00

a1 —dy T A3z — Ay
Converges; that is,
Z(—l)k‘lak =lim) (-1D)*'aq,=1limS, =S

n—00 n—00

k=1

Where S is its sum and S,, is the nt" partial sum. Moreover,
for all n.

|S _Snl S Ap+1

Alternating Series (from last week)

Partial Sums S,

WA
w
1
Q
p—
|
Q
N
]
|
Q
w

NG
]

a, —a, +a; —ay

Alternating Series Example

* How many terms are needed to approximate
sin 1with an error less than >x1076?

Expand about c = 0.

sin x = sin(0) + cos(0) x — sin(O)’;—? — cos(0) ’é—? + .-

Since sin(0) = 0 and cos(0) = 1:
x3 x°
sin(x) =1 — 3 + Thal

Alternating Series Example

| B 1 1 1
51n(1)—1—§+5! 7!+---

By the alternating series theorem, the error

does not exceed the first neglected term:
|S o Snl S dpt1

1
(2n+1)!

After n terms the first neglected term is

! < 1><1O‘6
2n+1)! 2

Alternating Series Example

1 1

_ —6
!<2><10

(2n+1)
Using base 10 logarithmes...
log(2n+1)! >log2+ 6 = 6.3

logl0 6.6 >n=5

Now for something different...

Floating Point Representation

Floating Point

37.96389

g —

Normalized Scientific Notation
37.96389 = 0,3796389 x 107

VAN

Not zero Fraction X 10"

Floating Point (base 10)

n

(anan_l alao.blbz ...)10 —_ z aklok + z bklo_k
k=0 k=1

 Some numbers have infinite number of digits
in the fractional part.

— 1 = 3.14159 ...
— 2 = 1.41421 ...

Other Bases (f3)

* Binary (f = 2)
* Octal (8 = 8)
* Hex (8 = 16)

n o
(anan_l ...alao.blbz)'B —_ z akﬁk + z bkﬁ_k
k=1

k=0

(See Appendix B in Text)

Integer Conversion

* Decimal to Binary (example)
(N)1o = a2/ + -+ a12 + ay

e Compute (1\210 =Q+R

—Q=a2" '+t a2+

—_R=2 (ag is the remainder in long division)
2

* Repeat process on successive () to obtain
remaining digits.

Integer Conversion

Convert 743 to binary.

%“3 = 371 remainder 1.

_ p=1_%
Q—371,R—2— »
a0=1
Repeat

(743),, = (1011100111),

© 00 N O 0 B W N —» O

371
185
92
46
23
11

O B N Ul

(a

1

R O RPr B P O O R K

Fractional Part

00

X = Z cxB7* = (0.c163 ...)5

k=1

Bx = (c1.c3¢3...)8
Equate the integer parts of both sides of the =
sign.

c; = I(Bx)
Where I(y) is the integer part of y.

Fractional Conversion

dog = x
d; = F(Bdy) c; =1(Bdy)
d, = F(fd;) c, = 1(Bdy)

e Start with x

 Multiply x by S

e Set coefficient to integer part of
product.

 Repeat with fractional part of product

Fractional Conversion

* Convert 0.100 to binary.
2X%X0.100=0.200 - ¢, =0
2X%x0.200=0400 - ¢, =0
2X%X0.400=0.800 - ¢c3=0
2x%x0800=1.600- c, =1
2X0.600=1.200-> ¢cz;=1
2% 0.200=0400->¢c,=0

(0.1)10 = (0.0001100110011 ...),

Normalized Floating Point

Real decimal number x can be written:
X = $0.d1d2d3 e X 107’1

Or
— T n (1
X = +1r X 10 (1—OS7"<1)
r — normalized mantissa in [,1)

n — exponent
d, # 0

Normalized Floating Point

* Real binary number x can be written:
X = $0.b1b2b3 e X 211

* Or
x =+4q x 2™ (1—125q<1)
e g— normalized mantissa in [%,1)

‘'n — exponent
¢ by # 0

Computer Representation

* Finite Word Length (number of bits per word)
— Finite number of digits per number
— Irrational numbers can not be represented
— Numbers may be too big or too small

* 1 word per number in single precision

e 2 or more words per number in extended
precision.

Computer Representation

* Machine numbers are a discrete set.
e Consider x = F(0.b,b,b3) x 27K

vvvvvvvvvv

[[| I | I | | | | | |
0 116 1/8 316 1/4 516 3/48 ThE 172 i 34 T 1 a4 32 74

e x=+4qgx2™
* m outside permissible range — overflow
or underflow.

Computer Representation

1
e Numbers < T underflow to zero.

* Numbers > Z overflow to machine infinity.

* Allowing only normalized numbers (b; = 1)
creates hole at zero. 1/8, 1/16, and 3/16 are

lost.

VVVVV

| I | | | | | | | |
a /4 516 33 A6 102 2/ 314 Tia 1 W e T

Computer Representation

* Single-precision
— 32 bit word

— Most reals cannot be expressed as floating point
number due to infinite decimal or binary
representation.

* Splitting up the bits +g x 2™
— Sign of g — 1 bit
— Integer |m| - 8 bits (sign contained in the 8 bits.)
— Number g — 23 bits

Single Precision

sign hit (8 bits) {23 bits)

\l/ exponent mantissa
| I

Il
[olo]1]1]1]1]1]o]ofo}1]o]olofofo]o]ofofo]o]oofo]ofofo]o]oofofo] = 0.15625
31 40 23 (hit index) 0

Standard single precision floating point

(~1)% x 27127 x (L. f)
* Bit 31 contains s, sign of mantissa.
* Bits 23-30 contain c in 267127
* Bits 0-22 contains f from (1.f),

Representation of the Mantissa

 The first bit in the mantissa of a normalized
floating point number is always 1.

* In the 1-plus form (1. f),the right most 23

oits of the word represent f and the 1 s
nidden.

* So you get 24 bits of accuracy while using 23.
c1<(1.f)s2-27%

e 0 <c < 255(0and 255 reserved)
e —126 < c—127 < 127 (actual exponent)

Representation

* Largest single precision floating point number
representable is
(2 _ 2—23)2127 ~ 2128 ~ 3.4 X 1038

* Smallest positive number representable is
27126 = 1.2 x 10738
* Machine epsilone = 2723 = 1.2 X 1077 is
the smallest number suchthat 1 + € # 1.

Representation of real X

* If x is zero use full word of zero bits. (possible sign
Dit)
* For nonzero x

— Assign sign bit

— Convert integer and fractional part of |x| to binary

— 1-plus normalize the result by shifting binary point so
that first bit to left of point is 1. All bits to left of this 1
are zero.

— Adjust the exponent to reflect the bit shift in the
mantissa.

— Determine C from the current exponent.

Example from book

Determine single precision machine
representation of -52.234375

Negative number so sign bit is 1.

Convert 52 to binary (see integer conversion
example)

—(52.)4, = (110100.),

Convert 0.234375 to binary (see fractional
conversion example)

—(.234375),, = (.001111),

Example from book

* (52.234375),o = (1.101000011110), x 2°

— After one-plus normalization
—(.101000011110), is the stored mantissa

* Exponentis (5)1g
—Wehavec — 127 =5 - ¢ =132
— Stored exponent: (132),, = (10000100),
* [11000010010100001111000000000000],

Going the other way

« [01000101110111100100000000000000],

e Exponentc = (10001011), = (139)4,
— Exponentisc — 127 =12
 Mantissa in one-plus form is
(1.101111001),

* Combining exponent and mantissa
(1.101111001), x 24 = (1101111001000),
= (15710)4
=0x1+1x8+7x8>+5x%x8 +1x8*
= 7112

Special Cases

 denormalized/subnormal numbers: use 1 extra

bit in the mantissa

— exponent is now -126 (less precision, more range),
indicated by 00000000, in the exponent field

two zeros: +0 and -0 (O mantissa, O exponent)
two oo’s: +00 and -co

oo (0 mantissa, 11111111, exponenet)

NaN (any mantissa, 11111111, exponent)
see appendix C.1 in NMC 6th ed.

Double precision

sigqn
hit

{11 bits) {52 bits}
exponent mantissa

\

fy B2

=7 =1 (it index) 0

1-bit sign

11-bit exponent

52-bit mantissa

single-precision: about 6 decimal digits of
precision

double-precision: about 15 decimal digits of
precision

m=c-1023

Approx. Range

—3.4x1038 <x<-1.18x%x 10738
Single 0
1.18 X 10738 < x < 3.4 x 1038
—1.8x 1039 < x < —2.23 x 107308
Double 0 271022 _, 71024

223 x 10739 < x < 1.8 x 10398

2-126 _, 7128

>>> sys.float_info.max
1.7976931348623157e+308
>>> sys.float_info.min
2.2250738585072014e-308
>>>

Number Line

Floating Point Number Line

l_ denormal _i

under- under-

flow flow
overflow usable range usable range overflow

i i } —H :_ i : H-— ' ' i
—10+308 —10-308 0 10-308 10Q+308
—realmax —realmin realmin realmax

ZOOom-in view

Computer Representation

* Roundoff occurs when digits in a decimal point
(0.3333...) are lost (0.3333) due to a limit on
the memory available for storing one
numerical value.

e Truncation error occurs when discrete values
are used to approximate a mathematical
expression.

Uncertainty

Errors in input data can cause uncertain results

* |nput data can be experimental or rounded.
leads to a certain variation in the results

* Well-conditioned: numerical results are
Insensitive to small variations in the input

* |ll-conditioned: small variations lead to
drastically different numerical calculations
(a.k.a. poorly conditioned)

Uncertainty

Need to...

1. Solve a problem so that the calculation is not
susceptible to large roundoff error

2. Solve a problem so that the approximation has a
tolerable truncation error

How?
* Incorporate roundoff-truncation knowledge into
— The mathematical model
— The method
— The algorithm
— Software design

e Utilize awareness of uncertainty to interpret results.

