
Numerical Methods

Lecture 3

CS 357 Fall 2013

David Semeraro

Alternating Series (from last week)

If 𝑎1 ≥ 𝑎2 ≥ 𝑎3 ≥ ⋯ ≥ 𝑎𝑛 ≥ ⋯ ≥ 0 for all 𝑛 and
lim
𝑛→∞
𝑎𝑛 = 0, then the alternating series:

𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 +⋯
Converges; that is,

 (−1)𝑘−1𝑎𝑘

∞

𝑘=1

= lim
𝑛→∞
 (−1)𝑘−1
𝑛

𝑘=1

𝑎𝑘 = lim
𝑛→∞
𝑆𝑛 = 𝑆

Where 𝑆 is its sum and 𝑆𝑛 is the 𝑛𝑡ℎ partial sum. Moreover,
for all 𝑛.

𝑆 − 𝑆𝑛 ≤ 𝑎𝑛+1

Alternating Series (from last week)

Partial Sums 𝑆𝑛

𝑆1 = 𝑎1

 𝑆2 = 𝑎1 − 𝑎2
 𝑆3 = 𝑎1 − 𝑎2 + 𝑎3

 𝑆4 = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4
…

Alternating Series Example

• How many terms are needed to approximate
sin 1with an error less than 1

2
×10−6?

Expand about c = 0.

sin 𝑥 ≈ sin 0 + cos 0 𝑥 − sin 0 𝑥
2

2! −cos 0
𝑥3

3! +⋯

Since sin 0 = 0 and cos 0 = 1:

sin 𝑥 = 1 −
𝑥3

3!
+
𝑥5

5!
− ⋯

Alternating Series Example

sin 1 = 1 −
1

3!
+
1

5!
−
1

7!
+ ⋯

By the alternating series theorem, the error
does not exceed the first neglected term:

𝑆 − 𝑆𝑛 ≤ 𝑎𝑛+1

After n terms the first neglected term is
1

2𝑛+1 !
.

1

2𝑛 + 1 !
<
1

2
× 10−6

Alternating Series Example

1

2𝑛 + 1 !
<
1

2
× 10−6

Using base 10 logarithms…

log 2𝑛 + 1 ! > log 2 + 6 = 6.3

log 10 ≈ 6.6 → 𝑛 ≥ 5

Now for something different…

Floating Point Representation

Floating Point

37.96389

Integer Part Fractional Part

Normalized Scientific Notation
37.96389 = 0.3796389 × 102

Fraction × 10𝑛 Not zero

Floating Point (base 10)

𝑎𝑛𝑎𝑛−1…𝑎1𝑎0. 𝑏1𝑏2… 10 = 𝑎𝑘10
𝑘

𝑛

𝑘=0

+ 𝑏𝑘10
−𝑘

∞

𝑘=1

• Some numbers have infinite number of digits
in the fractional part.

– 𝜋 = 3.14159…

– 2 = 1.41421…

Other Bases 𝛽

• Binary 𝛽 = 2

• Octal 𝛽 = 8

• Hex 𝛽 = 16

𝑎𝑛𝑎𝑛−1…𝑎1𝑎0. 𝑏1𝑏2… 𝛽 = 𝑎𝑘𝛽
𝑘

𝑛

𝑘=0

+ 𝑏𝑘𝛽
−𝑘

∞

𝑘=1

(See Appendix B in Text)

Integer Conversion

• Decimal to Binary (example)

𝑁 10 = 𝑎𝑗2
𝑗 +⋯+ 𝑎12 + 𝑎0

• Compute
𝑁 10

2
= 𝑄 + 𝑅

– 𝑄 = 𝑎𝑗2
𝑗−1 +⋯+ 𝑎22 + 𝑎1

– 𝑅 =
𝑎0

2
 (𝑎0 is the remainder in long division)

• Repeat process on successive 𝑄 to obtain
remaining digits.

Integer Conversion

• Convert 743 to binary.

•
743

2
= 371 remainder 1.

• 𝑄 = 371; 𝑅 =
1

2
=
𝑎0

2

• 𝑎0 = 1

• Repeat

 743 10 = 1011100111 2

j Q 𝒂𝒋

0 371 1

1 185 1

2 92 1

3 46 0

4 23 0

5 11 1

6 5 1

7 2 1

8 1 0

9 0 1

Fractional Part

𝑥 = 𝑐𝑘𝛽
−𝑘 = 0. 𝑐1𝑐2… 𝛽

∞

𝑘=1

𝛽𝑥 = 𝑐1. 𝑐2 𝑐3… 𝛽

Equate the integer parts of both sides of the =
sign.

𝑐1 = 𝐼 𝛽𝑥

Where 𝐼 𝑦 is the integer part of y.

Fractional Conversion

𝑑0 = 𝑥

 𝑑1 = 𝐹 𝛽𝑑0 𝑐1 = 𝐼 𝛽𝑑0

 𝑑2 = 𝐹 𝛽𝑑1 𝑐2 = 𝐼 𝛽𝑑1

… …

• Start with x
• Multiply x by 𝛽
• Set coefficient to integer part of

product.
• Repeat with fractional part of product

Fractional Conversion

• Convert 0.100 to binary.
2 × 0.100 = 0.200 → 𝑐1 = 0
2 × 0.200 = 0.400 → 𝑐2 = 0
2 × 0.400 = 0.800 → 𝑐3 = 0
2 × 0.800 = 1.600 → 𝑐4 = 1
2 × 0.600 = 1.200 → 𝑐5 = 1
2 × 0.200 = 0.400 → 𝑐6 = 0

𝟎. 𝟏 𝟏𝟎 = 𝟎. 𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏… 𝟐

Normalized Floating Point

• Real decimal number x can be written:
𝑥 = ∓0. 𝑑1𝑑2𝑑3…× 10

𝑛

• Or

𝑥 = ∓𝑟 × 10𝑛 1
10
≤𝑟<1

• 𝑟 − normalized mantissa in [1
10
,1)

• 𝑛 − exponent

• 𝑑1 ≠ 0

Normalized Floating Point

• Real binary number x can be written:
𝑥 = ∓0. 𝑏1𝑏2𝑏3…× 2

𝑛

• Or

𝑥 = ∓𝑞 × 2𝑚 1
12
≤𝑞<1

• q− normalized mantissa in [1
2
,1)

• 𝑛 − exponent

• 𝑏1 ≠ 0

Computer Representation

• Finite Word Length (number of bits per word)

– Finite number of digits per number

– Irrational numbers can not be represented

– Numbers may be too big or too small

• 1 word per number in single precision

• 2 or more words per number in extended
precision.

Computer Representation

• Machine numbers are a discrete set.

• Consider 𝑥 = ∓ 0. 𝑏1𝑏2𝑏3 × 2
∓𝑘

• 𝑥 = ∓𝑞 × 2𝑚
• 𝑚 outside permissible range – overflow

or underflow.

Computer Representation

• Numbers <
1

16
 underflow to zero.

• Numbers >
7

4
 overflow to machine infinity.

• Allowing only normalized numbers 𝑏1 = 1
creates hole at zero. 1/8, 1/16, and 3/16 are
lost.

Computer Representation

• Single-precision
– 32 bit word

– Most reals cannot be expressed as floating point
number due to infinite decimal or binary
representation.

• Splitting up the bits ∓𝑞 × 2𝑚
– Sign of q – 1 bit

– Integer |m| - 8 bits (sign contained in the 8 bits.)

– Number q – 23 bits

Single Precision

Standard single precision floating point

−1 𝑠 × 2𝑐−127 × 1. 𝑓 2
• Bit 31 contains s, sign of mantissa.
• Bits 23-30 contain c in 2𝑐−127
• Bits 0-22 contains 𝑓 from 1. 𝑓 2

Representation of the Mantissa

• The first bit in the mantissa of a normalized
floating point number is always 1.

• In the 1-plus form 1. 𝑓 2the right most 23
bits of the word represent 𝑓 and the 1 is
hidden.

• So you get 24 bits of accuracy while using 23.

• 1 ≤ 1. 𝑓 2 ≤ 2 − 2
−23

Exponent

• 0 < 𝑐 < 255 (0 and 255 reserved)

• −126 ≤ 𝑐 − 127 ≤ 127 (actual exponent)

Representation

• Largest single precision floating point number
representable is
2 − 2−23 2127 ≈ 2128 ≈ 3.4 × 1038

• Smallest positive number representable is
2−126 ≈ 1.2 × 10−38

• Machine epsilon 𝜖 = 2−23 ≈ 1.2 × 10−7 is
the smallest number such that 1 + 𝜖 ≠ 1.

Representation of real X

• If x is zero use full word of zero bits. (possible sign
bit)

• For nonzero x
– Assign sign bit
– Convert integer and fractional part of |x| to binary
– 1-plus normalize the result by shifting binary point so

that first bit to left of point is 1. All bits to left of this 1
are zero.

– Adjust the exponent to reflect the bit shift in the
mantissa.

– Determine C from the current exponent.

Example from book

• Determine single precision machine
representation of -52.234375

• Negative number so sign bit is 1.

• Convert 52 to binary (see integer conversion
example)

– 52. 10 = 110100. 2

• Convert 0.234375 to binary (see fractional
conversion example)

– .234375 10 = .001111 2

Example from book

• 52.234375 10 = 1.101000011110 2 × 2
5

– After one-plus normalization

– .101000011110 2 is the stored mantissa

• Exponent is 5 10

– We have 𝑐 − 127 = 5 → 𝑐 = 132

– Stored exponent: 132 10 = 10000100 2

• 11000010010100001111000000000000 2

Going the other way

• 01000101110111100100000000000000 2

• Exponent 𝑐 = 10001011 2 = 139 10
– Exponent is 𝑐 − 127 = 12

• Mantissa in one-plus form is
1.101111001 2

• Combining exponent and mantissa
1.101111001 2 × 2

12 = 1101111001000 2
= 15710 8

= 0 × 1 + 1 × 8 + 7 × 82 + 5 × 83 + 1 × 84
= 7112

Special Cases

• denormalized/subnormal numbers: use 1 extra
bit in the mantissa
– exponent is now -126 (less precision, more range),

indicated by 000000002 in the exponent field

• two zeros: +0 and -0 (0 mantissa, 0 exponent)

• two ∞’s: +∞ and -∞

• ∞ (0 mantissa, 111111112 exponenet)

• NaN (any mantissa, 111111112 exponent)

• see appendix C.1 in NMC 6th ed.

Double precision

• 1-bit sign
• 11-bit exponent
• 52-bit mantissa
• single-precision: about 6 decimal digits of

precision
• double-precision: about 15 decimal digits of

precision
• m = c - 1023

Range

Type Range Approx. Range

Single

−3.4 × 1038 ≤ 𝑥 ≤ −1.18 × 10−38

2−126 → 2128 0

1.18 × 10−38 ≤ 𝑥 ≤ 3.4 × 1038

Double

−1.8 × 10308 ≤ 𝑥 ≤ −2.23 × 10−308

2−1022 → 21024 0

2.23 × 10−308 ≤ 𝑥 ≤ 1.8 × 10308

>>> sys.float_info.max
1.7976931348623157e+308
>>> sys.float_info.min
2.2250738585072014e-308
>>>

Number Line

Computer Representation

• Roundoff occurs when digits in a decimal point
(0.3333...) are lost (0.3333) due to a limit on
the memory available for storing one
numerical value.

• Truncation error occurs when discrete values
are used to approximate a mathematical
expression.

Uncertainty

Errors in input data can cause uncertain results

• Input data can be experimental or rounded.

leads to a certain variation in the results

• Well-conditioned: numerical results are

insensitive to small variations in the input

• Ill-conditioned: small variations lead to

drastically different numerical calculations

(a.k.a. poorly conditioned)
• L.

Uncertainty

Need to…

1. Solve a problem so that the calculation is not
susceptible to large roundoff error

2. Solve a problem so that the approximation has a
tolerable truncation error

How?

• Incorporate roundoff-truncation knowledge into
– The mathematical model

– The method

– The algorithm

– Software design

• Utilize awareness of uncertainty to interpret results.

