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Alternating Series (from last week) 

If 𝑎1 ≥ 𝑎2 ≥ 𝑎3 ≥ ⋯ ≥ 𝑎𝑛 ≥ ⋯ ≥ 0 for all 𝑛 and 
lim
𝑛→∞
𝑎𝑛 = 0, then the alternating series: 

𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 +⋯ 
Converges; that is, 

 (−1)𝑘−1𝑎𝑘

∞

𝑘=1

= lim
𝑛→∞
 (−1)𝑘−1
𝑛

𝑘=1

𝑎𝑘 = lim
𝑛→∞
𝑆𝑛 = 𝑆 

 
Where 𝑆 is its sum and 𝑆𝑛 is the 𝑛𝑡ℎ partial sum. Moreover, 
for all 𝑛. 

𝑆 − 𝑆𝑛 ≤ 𝑎𝑛+1 



Alternating Series (from last week) 

Partial Sums 𝑆𝑛 

 
𝑆1 = 𝑎1 

          𝑆2  = 𝑎1 − 𝑎2 
                    𝑆3  = 𝑎1 − 𝑎2 + 𝑎3 

                              𝑆4  = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 
… 



Alternating Series Example 

• How many terms are needed to approximate 
sin 1with an error less than 1

2
×10−6? 

Expand about c = 0.  

sin 𝑥 ≈ sin 0 + cos 0 𝑥 − sin 0 𝑥
2

2! −cos 0
𝑥3

3! +⋯ 

 

Since sin 0 = 0 and cos 0 = 1: 

sin 𝑥 = 1 −
𝑥3

3!
+
𝑥5

5!
− ⋯ 



Alternating Series Example 

sin 1 = 1 −
1

3!
+
1

5!
−
1

7!
+ ⋯ 

By the alternating series theorem, the error 
does not exceed the first neglected term: 

𝑆 − 𝑆𝑛 ≤ 𝑎𝑛+1 

After n terms the first neglected term is 
1

2𝑛+1 !
. 

1

2𝑛 + 1 !
<
1

2
× 10−6 



Alternating Series Example 

1

2𝑛 + 1 !
<
1

2
× 10−6 

 

Using base 10 logarithms… 

 
log 2𝑛 + 1 ! > log 2 + 6 = 6.3 

 
log 10 ≈ 6.6 → 𝑛 ≥ 5 



Now for something different… 

Floating Point Representation 



Floating Point 

 

37.96389 

Integer Part Fractional Part 

Normalized Scientific Notation 
37.96389 = 0.3796389 × 102 

Fraction × 10𝑛 Not zero 



Floating Point (base 10) 

𝑎𝑛𝑎𝑛−1…𝑎1𝑎0. 𝑏1𝑏2… 10 =  𝑎𝑘10
𝑘

𝑛

𝑘=0

+ 𝑏𝑘10
−𝑘

∞

𝑘=1

 

• Some numbers have infinite number of digits 
in the fractional part. 

– 𝜋 = 3.14159… 

– 2 = 1.41421… 

 

 



Other Bases 𝛽  

• Binary 𝛽 = 2  

• Octal 𝛽 = 8  

• Hex 𝛽 = 16  

 

𝑎𝑛𝑎𝑛−1…𝑎1𝑎0. 𝑏1𝑏2… 𝛽 =  𝑎𝑘𝛽
𝑘

𝑛

𝑘=0

+ 𝑏𝑘𝛽
−𝑘

∞

𝑘=1

 

 

(See Appendix B in Text) 



Integer Conversion 

• Decimal to Binary (example) 

𝑁 10 = 𝑎𝑗2
𝑗 +⋯+ 𝑎12 + 𝑎0 

• Compute 
𝑁 10

2
= 𝑄 + 𝑅 

– 𝑄 = 𝑎𝑗2
𝑗−1 +⋯+ 𝑎22 + 𝑎1 

– 𝑅 =
𝑎0

2
  ( 𝑎0 is the remainder in long division) 

• Repeat process on successive 𝑄  to obtain 
remaining digits.  



Integer Conversion 

• Convert 743 to binary. 

•
743

2
= 371 remainder 1. 

• 𝑄 = 371; 𝑅 =
1

2
=
𝑎0

2
 

• 𝑎0 = 1 

• Repeat 

 

 743 10 = 1011100111 2 

 

j Q  𝒂𝒋  

0 371 1 

1 185 1 

2 92 1 

3 46 0 

4 23 0 

5 11 1 

6 5 1 

7 2 1 

8 1 0 

9 0 1 



Fractional Part 

𝑥 =  𝑐𝑘𝛽
−𝑘 = 0. 𝑐1𝑐2… 𝛽

∞

𝑘=1

 

 
𝛽𝑥 = 𝑐1. 𝑐2 𝑐3… 𝛽 

Equate the integer parts of both sides of the = 
sign.  

𝑐1 = 𝐼 𝛽𝑥  

Where 𝐼 𝑦  is the integer part of y.  



Fractional Conversion 

𝑑0 = 𝑥 

                      𝑑1 = 𝐹 𝛽𝑑0  𝑐1 = 𝐼 𝛽𝑑0  

                      𝑑2 = 𝐹 𝛽𝑑1  𝑐2 = 𝐼 𝛽𝑑1  

… … 

• Start with x 
• Multiply x by 𝛽 
• Set coefficient to integer part of 

product. 
• Repeat with fractional part of product 



Fractional Conversion 

• Convert 0.100 to binary. 
2 × 0.100 = 0.200 →  𝑐1 = 0 
2 × 0.200 = 0.400 →  𝑐2 = 0 
2 × 0.400 = 0.800 →  𝑐3 = 0 
2 × 0.800 = 1.600 →  𝑐4 = 1 
2 × 0.600 = 1.200 →  𝑐5 = 1 
2 × 0.200 = 0.400 → 𝑐6 = 0 

𝟎. 𝟏 𝟏𝟎 = 𝟎. 𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏… 𝟐 



Normalized Floating Point 

• Real decimal number x can be written: 
𝑥 = ∓0. 𝑑1𝑑2𝑑3…× 10

𝑛 

• Or 

𝑥 = ∓𝑟 × 10𝑛  1
10
≤𝑟<1  

• 𝑟 − normalized mantissa in [ 1
10
,1) 

• 𝑛 − exponent 

• 𝑑1 ≠ 0 



Normalized Floating Point 

• Real binary number x can be written: 
𝑥 = ∓0. 𝑏1𝑏2𝑏3…× 2

𝑛 

• Or 

𝑥 = ∓𝑞 × 2𝑚  1
12
≤𝑞<1  

• q− normalized mantissa in [1
2
,1) 

• 𝑛 − exponent 

• 𝑏1 ≠ 0 



Computer Representation 

• Finite Word Length (number of bits per word) 

– Finite number of digits per number 

– Irrational numbers can not be represented 

– Numbers may be too big or too small 

• 1 word per number in single precision 

• 2 or more words per number in extended 
precision. 

 



Computer Representation 

• Machine numbers are a discrete set. 

• Consider 𝑥 = ∓ 0. 𝑏1𝑏2𝑏3 × 2
∓𝑘 

 

• 𝑥 = ∓𝑞 × 2𝑚 
• 𝑚 outside permissible range – overflow 

or underflow. 



Computer Representation 

• Numbers < 
1

16
  underflow to zero. 

• Numbers > 
7

4
  overflow to machine infinity. 

• Allowing only normalized numbers 𝑏1 = 1  
creates hole at zero. 1/8, 1/16, and 3/16 are 
lost. 



Computer Representation 

• Single-precision 
– 32 bit word 

– Most reals cannot be expressed as floating point 
number due to infinite decimal or binary 
representation.  

• Splitting up the bits ∓𝑞 × 2𝑚 
– Sign of q – 1 bit 

– Integer |m| - 8 bits (sign contained in the 8 bits.) 

– Number q – 23 bits 



Single Precision  

Standard single precision floating point 
 

−1 𝑠 × 2𝑐−127 × 1. 𝑓 2 
• Bit 31 contains s, sign of mantissa. 
• Bits 23-30 contain c in 2𝑐−127 
• Bits 0-22 contains 𝑓 from 1. 𝑓 2 



Representation of the Mantissa 

• The first bit in the mantissa of a normalized 
floating point number is always 1.  

• In the 1-plus form 1. 𝑓 2the right most 23 
bits of the word represent 𝑓 and the 1 is 
hidden. 

• So you get 24 bits of accuracy while using 23.  

• 1 ≤ 1. 𝑓 2 ≤ 2 − 2
−23 



Exponent 

• 0 < 𝑐 < 255 ( 0 and 255 reserved ) 

• −126 ≤ 𝑐 − 127 ≤ 127 (actual exponent) 

 

 



Representation 

• Largest single precision floating point number 
representable is 
2 − 2−23 2127 ≈ 2128 ≈ 3.4 × 1038 

• Smallest  positive number representable is  
2−126 ≈ 1.2 × 10−38 

• Machine epsilon 𝜖 = 2−23 ≈ 1.2 × 10−7 is 
the smallest number such that 1 + 𝜖 ≠ 1.  



Representation of real X 

• If x is zero use full word of zero bits. (possible sign 
bit) 

• For nonzero x 
– Assign sign bit 
– Convert integer and fractional part of |x| to binary 
– 1-plus normalize the result by shifting binary point so 

that first bit to left of point is 1. All bits to left of this 1 
are zero. 

– Adjust the exponent to reflect the bit shift in the 
mantissa. 

– Determine C from the current exponent.  



Example from book 

• Determine single precision machine 
representation of -52.234375 

• Negative number so sign bit is 1. 

• Convert 52 to binary (see integer conversion 
example) 

– 52. 10 = 110100. 2 

• Convert 0.234375 to binary (see fractional 
conversion example) 

– .234375 10 = .001111 2 



Example from book 

• 52.234375 10 = 1.101000011110 2 × 2
5 

– After one-plus normalization 

– .101000011110 2 is the stored mantissa 

• Exponent is 5 10 

– We have 𝑐 − 127 = 5 → 𝑐 = 132 

– Stored exponent: 132 10 = 10000100 2 

• 11000010010100001111000000000000 2 

 



Going the other way 

• 01000101110111100100000000000000 2 

• Exponent 𝑐 = 10001011 2 = 139 10 
– Exponent is 𝑐 − 127 = 12 

• Mantissa in one-plus form is 
1.101111001 2 

• Combining exponent and mantissa 
1.101111001 2 × 2

12 = 1101111001000 2 
= 15710 8 

= 0 × 1 + 1 × 8 + 7 × 82 + 5 × 83 + 1 × 84 
= 7112 



Special Cases 

• denormalized/subnormal numbers: use 1 extra 
bit in the mantissa 
– exponent is now -126 (less precision, more range), 

indicated by 000000002 in the exponent field 

• two zeros: +0 and -0 (0 mantissa, 0 exponent) 

• two ∞’s: +∞ and -∞ 

• ∞ (0 mantissa, 111111112 exponenet) 

• NaN (any mantissa, 111111112 exponent) 

• see appendix C.1 in NMC 6th ed. 



Double precision 

• 1-bit sign 
• 11-bit exponent 
• 52-bit mantissa 
• single-precision: about 6 decimal digits of 

precision 
• double-precision: about 15 decimal digits of 

precision 
• m = c - 1023 



Range 

Type Range Approx. Range 

Single 

−3.4 × 1038 ≤ 𝑥 ≤ −1.18 × 10−38 

2−126 → 2128 0 

1.18 × 10−38 ≤ 𝑥 ≤ 3.4 × 1038 

Double 

−1.8 × 10308 ≤ 𝑥 ≤ −2.23 × 10−308 

2−1022 → 21024 0 

2.23 × 10−308 ≤ 𝑥 ≤ 1.8 × 10308 

>>> sys.float_info.max 
1.7976931348623157e+308 
>>> sys.float_info.min 
2.2250738585072014e-308 
>>>  



Number Line 



Computer Representation 

• Roundoff occurs when digits in a decimal point 
(0.3333...) are lost (0.3333) due to a limit on 
the memory available for storing one 
numerical value. 

• Truncation error occurs when discrete values 
are used to approximate a mathematical 
expression. 



Uncertainty 

Errors in input data can cause uncertain results 

• Input data can be experimental or rounded. 

leads to a certain variation in the results 

• Well-conditioned: numerical results are 

insensitive to small variations in the input 

• Ill-conditioned: small variations lead to 

drastically different numerical calculations 

(a.k.a. poorly conditioned) 
• L. 



Uncertainty 

Need to…  

1. Solve a problem so that the calculation is not 
susceptible to large roundoff error 

2. Solve a problem so that the approximation has a 
tolerable truncation error 

How? 

• Incorporate roundoff-truncation knowledge into 
– The mathematical model 

– The method 

– The algorithm 

– Software design 

• Utilize awareness of uncertainty to interpret results. 


