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Key Concepts

* Machine epsilon, €, is the smallest machine
number for which 1 + € # 1.

* In single precision, € = 2743.

* The relative error in representing a normalized
floating point number by a machine number

using round to nearest is bounded by the unit
roundoff error u.

* In single precision u = 274%.



Key Concepts

* Not all reals can be exactly represented as a machine
floating point number. Then what?

* |EEE options:

 Round to next nearest FP (preferred), Round to O, Round
up, and Round down

* Let x+ and x- be the two floating point machine numbers
closest to x

* round to nearest: round(x) = x- or x+, whichever is closest

* round toward 0: round(x) = x- or x+, whichever is between
0 and x

* round toward -oo (down): round(x) = x-
* round toward +oo (up): round(x) = x+



Errors in Representation

e 32 bit word example (single precision)

o x = 254897 _; gverflow

— Exponent is beyond the 8 bit range.

o x = 2745962 _; ynderflow

* Numbers that overflow or underflow have
large relative errors when replaced by nearest
machine numbers. They are said to be out of
range.



Errors in Representation

+ x=qx2™ (1<g<1, —-126 <m <127)

* Replace x with nearest machine number
— Correct rounding
— Roundoff error

* How large is the error in representing:
X = (Olblbz ...b24b25 )2 X Zm

by the nearest machine number.



Errors in Representation

* 2 options

— Round down (drop excess bits in mantissa)
X_ = (01b2b3 ...b24)2 X Zm

— Round up (add 1 unit to b,, in x_)
x, = [(0.1byb3 ...byy), + 2724 x 2™

* Closer number chosen to represent x.




Rounding Error

X_ X X4 X_ X X,

* Rounding down

1
|x — x| S§|X+—x_

* And
|X_|_ — .X'_l
— [(01b2b3 ...b24)2 + 2_24] X Zm
— (01b2b3 ...b24)2 X 2M = p—24+m

* (X — x_l < 2—25+m



Unit roundoff error

e The relative error is

2—25+nl 2—25

F—XWS <
X (Olblbz ...b24b25 )2 X Zm %



Unit roundoff

e u = 2 % where k is the number of binary
digits in the mantissa including the hidden bit.

e k = 24 for single precision k = 53 in double
precision.

* The same analysis holds for x closer to x,. The
relative error is still bounded by u.



* The set of representable machine numbers is

finite.

* So not all math operations are well defined.

e Basic algebra breaks down in floating point
arithmetic.
(a+b)+c+#a+ (b+c)

* How does roundoff impact computation errors
?



Error Analysis

* fl(x) is the floating point machine number
closest to x.

 We have shown:
x — fl(x
[x — fl(x)| <
| x|
* For 32 bit word length u = 2724

e Assuming correct rounding is used (as in
previous example)




Error Analysis

* Or written another way
fl(x) = x(1 + 6),
e |8] < 27%%* for single precision

* Consider some operation *€ (X,~, +, —)

* For machine numbers x, y combined
arithmetically we get fl(x * y) instead of

(x *y)



Error Analysis

* Assume the operation is correctly formed,
normalized, and rounded to form a machine
number. Then,

* fllxxy) = (x*y)(1 +6)
» 27 <527



Loss of Significance

e Subtraction can cause loss of significant digits
when the two numbers are nearly equal.

* This error can be reduced by various
techniques

— Taylor series

— Trigonometric identities
— Logarithmic properties
— Double precision

— Range reduction



Loss of Significance

* Revisit significant digits.
x = 0.5823962 x 10°

e x has 7 significant digits

e 5is the most significant
e 2is the least significant



Example from the text

Consider y « x — sinx

Calculate for small x on 10 decimal digit
computer.

Usex =1/,

Find machine number closest to x
x « 0.6666666667 x 1071

Calculate sin x
sin(x) « 0.6661729492 x 1071



Example from Text

 Calculate x — sin(x)

0.6666666667 x 101
— 0.6661729492 x 1071

0.0004937175 x 107! - 0.4937175000 x 10~*

/ N\

Normalized Spurious digits

Correct to 10 decimals =~ 0.4937174327 x 10™%



Loss of Precision Theorem

Let x and y be (normalized) floating point
machine numbers with x >y > 0.

f27P <1 —% < 279 for positive integers p and

g, the significant binary digits lost in calculating
X -y is between g and p.



example

* Consider x =37.593621 and y =37.584216

0.000244 =272 <1 - Y _ 0.0002501754 < 2711 =0.000488

X

* 11 to 12 bits lost in computing x — y

 What can we do to reduce loss of accuracy in
subtraction?



Example from previous lecture

* Evaluatey = vVx + 8§ —/x
—x =100and 6 = 0.1
— using 2 decimals

e Solution
\/x + 6 =+/100.1 = 10.0049987 ...

= 10.00 — v100 = 0.00"

‘ ‘ = 1 (catastrophic cancellation)

*The subtractlon is carried out exactly.



Example from previous lecture

 Rewrite the formula
y=(Vx + 8 —+x) (
B o)
Vx + 6 ++/x
0.1 0.1

Y =100+ 100 200 2005

\/x+6+\/§>
Vx + 6 ++x

|57—y

| =2.6 x107%
y



Taylor Series to the rescue.

* Revisit f(x) = x —sin(x) ,x - 0
* Use Taylor series to approximate sin(x).

x3 x°  x7
sm(x)—x—§+5 T
3 x5 7
f(x)—x—(x——+ Feee)

5 7!



Taylor series to the rescue

x3 x5 7
f)=3r=57 7

3
X
e Forsmall x: x > Pn and so near zero

cancelation occurs.

* By eliminating the large terms from f(x) we
eliminate the problem.



Taylor series to the rescue

How do we know for what values of x to use the
expansion form over the original expression?

* From the loss of precision theorem, choosing x
such that:

sin(x)

271 <1

X
Ensures at most 1 lost bit of accuracy is lost in
calculating x — sin(x).



Taylor series to the rescue

sin(x sin(x sin(x
jo1, SINCO _sin@) | sin(x)
X X X
sin(x
271 + ()31
X
sin(x
27t =271+ ()<1—2—1
X
sm(x)sl
X 2



Taylor series to the rescue

* For x| = 1.9 use x — sin(x)

* For |x| < 1.9 use 10 term Taylor form.



Taylor series to the rescue

* So for |x| = 1.9 we ensure less than 1 bit of
lost accuracy in the calculation of f(x) by
subtraction.

 What about the accuracy in the region where
we use the Taylor series?

23

* The 11t term is: —3 which for x = 1.9 ( the

largest value of x in the interval for which we
use the series) is ~ 10716



Taylor series to the rescue

3 XS X7

x |
f)=51=51%7

* This is an alternating series.
* For a 10 term approximation, by the alternating

series theorem, the error does not exceed the
11t term.

X23

e The 11t term is: = which for x = 1.9 ( the

largest value of x in the interval for which we use
the series) is ~ 10716



Using Trigonometry.

y < c0s?*(x) — sin®(x)
* This subtraction loses significant digits when
x — ™/, because cos*(™/,) = sin*(™/,).
* Avoid the cancelation by using the identity:
cos(2x) = cos?(x) — sin?(x)

y < cos(2x)



Logarithmic Properties

y < In(x) — 1
* Cancelation occursasx — e
y =In(x) — 1 =In(x) —In(e)

 Eliminate the subtraction with:
In(x) — In(e) = ln(g)

y < In(3)



Range Reduction

sin(x) = sin(x + 2nm)

* Only require values for 0 < x < 2m.

* Evaluation of sin(12532.14) is equivalent to
evaluation of sin(3.47).

12532.14
~ 1994.55

2T
12532.14 — (2w X 1994) =~ 3.47

Retaining 2 decimal digits of accuracy.




Range Reduction

 The computer uses this range reduction to
evaluate trigonometric functions.

* The subtraction has reduced the number of
significant digits in the argument from seven
to three.

* The computed value of sin(12532.14) will
have no more than 3 significant figures.



* Loss of significance may be avoided by
reformulating the expression or other
techniques such as series expansion.

* |f xand y are positive normalized floating

point machine numbers and
27P <1 —% < 274

Then at most p and at least g significant
binary bits are lost in computing x — y.



