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Key Concepts 

• Machine epsilon, 𝜖, is the smallest machine 
number for which 1 + 𝜖 ≠ 1. 

• In single precision, 𝜖 = 2−23.  

• The relative error in representing a normalized 
floating point number by a machine number 
using round to nearest is bounded by the unit 
roundoff error u. 

• In single precision 𝑢 = 2−24. 

 



Key Concepts 

• Not all reals can be exactly represented as a machine 
floating point number. Then what? 

• IEEE options: 
• Round to next nearest FP (preferred), Round to 0, Round 

up, and Round down 
• Let x+ and x- be the two floating point machine numbers 

closest to x 
• round to nearest: round(x) = x- or x+, whichever is closest 
• round toward 0: round(x) = x- or x+, whichever is between 

0 and x 
• round toward -∞ (down): round(x) = x- 
• round toward +∞ (up): round(x) = x+ 



Errors in Representation 

• 32 bit word example (single precision) 

• 𝑥 = 254897 → overflow 

– Exponent is beyond the 8 bit range.  

• 𝑥 = 2−45962 → underflow 

• Numbers that overflow or underflow have 
large relative errors when replaced by nearest 
machine numbers. They are said to be out of 
range. 



Errors in Representation 

• 𝑥 = 𝑞 × 2𝑚  1

2
≤ 𝑞 < 1,  −126 ≤ 𝑚 ≤ 127  

• Replace 𝑥 with nearest machine number 

– Correct rounding 

– Roundoff error 

• How large is the error in representing: 
𝑥 = 0.1𝑏1𝑏2 …𝑏24𝑏25 … 2 × 2𝑚 

 by the nearest machine number.  



Errors in Representation 

• 2 options 

– Round down (drop excess bits in mantissa) 
𝑥− = 0.1𝑏2𝑏3 …𝑏24 2 × 2𝑚 

– Round up (add 1 unit to 𝑏24 in 𝑥−) 
𝑥+ = 0.1𝑏2𝑏3 …𝑏24 2 + 2−24 × 2𝑚 

• Closer number chosen to represent x. 

𝑥 𝑥 𝑥− 𝑥+ 𝑥+ 𝑥− 



Rounding Error 

• Rounding down 

𝑥 − 𝑥− ≤
1

2
𝑥+ − 𝑥−  

• And  
𝑥+ − 𝑥−

= 0.1𝑏2𝑏3 …𝑏24 2 + 2−24 × 2𝑚

− 0.1𝑏2𝑏3 …𝑏24 2 × 2𝑚 = 2−24+𝑚 

• 𝑥 − 𝑥− ≤ 2−25+𝑚 

𝑥 𝑥 𝑥− 𝑥+ 𝑥+ 𝑥− 



Unit roundoff error 

• The relative error is 

 
𝑥 − 𝑥−

𝑥
≤

2−25+𝑚

0.1𝑏1𝑏2 …𝑏24𝑏25 … 2 × 2𝑚
≤

2−25

1
2

 

 

2−25

1
2

= 2−24 = 𝑢 

𝜖 = 2−23 → 𝜖 = 2𝑢 



Unit roundoff 

• 𝑢 = 2−𝑘 where 𝑘 is the number of binary 
digits in the mantissa including the hidden bit. 

• 𝑘 = 24 for single precision 𝑘 = 53 in double 
precision. 

• The same analysis holds for 𝑥 closer to 𝑥+. The 
relative error is still bounded by 𝑢. 



Key concepts 

• The set of representable machine numbers is 
finite. 

• So not all math operations are well defined. 

• Basic algebra breaks down in floating point 
arithmetic. 

𝑎 + 𝑏 + 𝑐 ≠ 𝑎 + 𝑏 + 𝑐  

• How does roundoff impact computation errors 
? 



Error Analysis 

• 𝑓𝑙(𝑥) is the floating point machine number 
closest to x.  

• We have shown: 
𝑥 − 𝑓𝑙(𝑥)

𝑥
< 𝑢 

• For 32 bit word length 𝑢 = 2−24 

• Assuming correct rounding is used (as in 
previous example) 



Error Analysis 

• Or written another way 
𝑓𝑙 𝑥 = 𝑥 1 + 𝛿 ,   

• 𝛿 ≤ 2−24 for single precision 

• Consider some operation ∗∈ ×,÷,+,−  

• For machine numbers 𝑥, 𝑦 combined 
arithmetically we get 𝑓𝑙(𝑥 ∗ 𝑦) instead of 
(𝑥 ∗ 𝑦) 



Error Analysis 

• Assume the operation is correctly formed, 
normalized, and rounded to form a machine 
number. Then,   

• 𝑓𝑙 𝑥 ∗ 𝑦 = (𝑥 ∗ 𝑦)(1 + 𝛿) 

• −2−24 ≤ 𝛿 ≤ 2−24 



Loss of Significance 

• Subtraction can cause loss of significant digits 
when the two numbers are nearly equal. 

• This error can be reduced by various 
techniques 
– Taylor series 

– Trigonometric identities 

– Logarithmic properties 

– Double precision 

– Range reduction 



Loss of Significance 

• Revisit significant digits.  
𝑥 = 0.5823962 × 105 

• 𝑥 has 7 significant digits 

• 5 is the most significant 

• 2 is the least significant 



Example from the text 

• Consider 𝑦 ← 𝑥 − sin 𝑥 

• Calculate for small x on 10 decimal digit 
computer.  

• Use 𝑥 = 1
15  

• Find machine number closest to x 
𝑥 ← 0.6666666667 × 10−1 

• Calculate sin 𝑥 
sin 𝑥 ← 0.6661729492 × 10−1 



Example from Text 

• Calculate 𝑥 − sin 𝑥  

 

0.6666666667 × 10−1 

− 0.6661729492 × 10−1 

0.0004937175 × 10−1 → 0.4937175000 × 10−4 

Spurious digits Normalized  

Correct to 10 decimals ≈ 0.4937174327 × 10−4 



Loss of Precision Theorem 

Let x and y be (normalized) floating point 
machine numbers with x > y > 0. 

If 2−𝑝 ≤ 1 −
𝑦

𝑥
≤ 2−𝑞 for positive integers p and 

q, the significant binary digits lost in calculating 
x - y is between q and p. 



example 

• Consider x = 37.593621 and y = 37.584216 
0.000244 = 2−12 ≤ 1 −

𝑦

𝑥
= 0.0002501754 ≤ 2−11 = 0.000488 

• 11 to 12 bits lost in computing 𝑥 − 𝑦 

 

• What can we do to reduce loss of accuracy in 
subtraction? 



Example from previous lecture 

• Evaluate 𝑦 = 𝑥 + 𝛿 − 𝑥  
– 𝑥 = 100 and 𝛿 = 0.1  

– using 2 decimals  

• Solution 

𝑥 + 𝛿 = 100.1 = 10.0049987… 

𝑦 = 10.00 − 100 = 0.00* 

𝑦 −𝑦

𝑦
= 1  (catastrophic cancellation) 

*The subtraction is carried out exactly.  



Example from previous lecture 

• Rewrite the formula 

𝑦 = 𝑥 + 𝛿 − 𝑥
𝑥 + 𝛿 + 𝑥

𝑥 + 𝛿 + 𝑥
 

               =
𝛿

𝑥 + 𝛿 + 𝑥
 

           𝑦 =
0.1

10.0 + 10.0
=

0.1

20.0
= 0.005 

 
𝑦 − 𝑦

𝑦
= 2.6 × 10−4 



Taylor Series to the rescue.  

• Revisit 𝑓 𝑥 = 𝑥 − sin 𝑥  , 𝑥 → 0 

• Use Taylor series to approximate sin 𝑥 . 

 

sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ 

 

𝑓 𝑥 = 𝑥 − (𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯) 



Taylor series to the rescue 

𝑓 𝑥 =  
𝑥3

3!
−

𝑥5

5!
+

𝑥7

7!
− ⋯ 

 

• For small x:  𝑥 ≫
𝑥3

3!
 and so near zero 

cancelation occurs. 

• By eliminating the large terms from 𝑓 𝑥  we 
eliminate the problem.  



Taylor series to the rescue 

How do we know for what values of x to use the 
expansion form over the original expression? 

• From the loss of precision theorem, choosing x 
such that: 

2−1 ≤ 1 −
sin 𝑥

𝑥
  

Ensures at most 1 lost bit of accuracy is lost in 
calculating 𝑥 − sin 𝑥 .  



Taylor series to the rescue 

2−1 +
sin 𝑥

𝑥
≤ 1 −

sin 𝑥

𝑥
+

sin 𝑥

𝑥
 

2−1 +
sin 𝑥

𝑥
≤ 1 

2−1 − 2−1 +
sin 𝑥

𝑥
≤ 1 − 2−1 

sin 𝑥

𝑥
≤

1

2
 



Taylor series to the rescue 

• For 𝑥 ≥ 1.9 use 𝑥 − sin 𝑥  

• For 𝑥 < 1.9 use 10 term Taylor form.  



Taylor series to the rescue 

• So for 𝑥 ≥ 1.9 we ensure less than 1 bit of 
lost accuracy in the calculation of 𝑓 𝑥  by 
subtraction.  

• What about the accuracy in the region where 
we use the Taylor series? 

• The 11th term is: 
𝑥23

23!
 which for 𝑥 = 1.9 ( the 

largest value of x in the interval for which we 
use the series) is ≈ 10−16 



Taylor series to the rescue 

𝑓 𝑥 =  
𝑥3

3!
−

𝑥5

5!
+

𝑥7

7!
− ⋯ 

• This is an alternating series.  

• For a 10 term approximation, by the alternating 
series theorem, the error does not exceed the 
11th term. 

• The 11th term is: 
𝑥23

23!
 which for 𝑥 = 1.9 ( the 

largest value of x in the interval for which we use 
the series) is ≈ 10−16 

 



Using Trigonometry.  

𝑦 ← 𝑐𝑜𝑠2 𝑥 − 𝑠𝑖𝑛2 𝑥  

• This subtraction loses significant digits when 
𝑥 → 𝜋

4  because 𝑐𝑜𝑠2 𝜋
4 = 𝑠𝑖𝑛2(𝜋 4 ). 

• Avoid the cancelation by using the identity: 
cos 2𝑥 = 𝑐𝑜𝑠2 𝑥 − 𝑠𝑖𝑛2 𝑥  

 
𝑦 ← cos 2𝑥  



Logarithmic Properties 

𝑦 ← ln 𝑥 − 1 

• Cancelation occurs as 𝑥 → 𝑒  
𝑦 = ln 𝑥 − 1 = ln 𝑥 − ln 𝑒  

 

• Eliminate the subtraction with: 

ln 𝑥 − ln 𝑒 = ln 𝑥
𝑒

 

 

𝑦 ← ln 𝑥
𝑒

 



Range Reduction 

sin 𝑥 = sin 𝑥 + 2𝑛𝜋  

• Only require values for 0 < 𝑥 ≤ 2𝜋.  

• Evaluation of sin 12532.14  is equivalent to 
evaluation of sin 3.47 . 

12532.14

2𝜋
≈ 1994.55 

12532.14 − 2𝜋 × 1994 ≈ 3.47 

Retaining 2 decimal digits of accuracy. 



Range Reduction 

• The computer uses this range reduction to 
evaluate trigonometric functions.  

• The subtraction has reduced the number of 
significant digits in the argument from seven 
to three.  

• The computed value of sin (12532.14) will 
have no more than 3 significant figures.   



Summary 

• Loss of significance may be avoided by 
reformulating the expression or other 
techniques such as series expansion. 

• If x and y are positive normalized floating 
point machine numbers  and 

2−𝑝 ≤ 1 − 𝑦
𝑥
≤ 2−𝑞 

    Then at most p and at least q significant 
binary bits are lost in computing 𝑥 − 𝑦. 


