
Lecture 5
Matrix, Vector Operations

David Semeraro

University of Illinois at Urbana-Champaign

September 10, 2013

David Semeraro (NCSA) CS 357 September 10, 2013 1 / 37

Goals:

recall linear algebra
cost analysis of basic operations
identify basic solution schemes to systems

David Semeraro (NCSA) CS 357 September 10, 2013 2 / 37

Why this is important:

matrix problems arise in many areas of computation (information
sciences, graphics, design, etc)
Basic Linear Algebra Subprograms (BLAS) is an interface standard for
operations
simple systems set the stage for further development: avoiding error,
avoiding large costs

David Semeraro (NCSA) CS 357 September 10, 2013 3 / 37

Prereq
Linear Algebra is a prerequisite of the course!

you should feel comfortable with Appendix D.1 in NMC6
Appendix D.2 in NMC6 should not be a surprise
You should recognize:

I Vector
I Matrix
I Matrix Vector product
I Inner product
I Scalar vector multiply
I Vector norms

David Semeraro (NCSA) CS 357 September 10, 2013 4 / 37

Matrix Inverse

Let A be a square (i.e. n× n) with real elements. The inverse of A is
designated A−1, and has the property that

A−1 A = I and A A−1 = I

The formal solution to Ax = b is x = A−1b.

Ax = b

A−1 Ax = A−1b

Ix = A−1b

x = A−1b

David Semeraro (NCSA) CS 357 September 10, 2013 5 / 37

Matrix Inverse

formal solution to Ax = b is x = A−1b

BUT it is bad to evaluate x this way
why?
we will not form A−1, but solve for x directly using Gaussian elimination.

David Semeraro (NCSA) CS 357 September 10, 2013 6 / 37

Matrix Inverse

formal solution to Ax = b is x = A−1b
BUT it is bad to evaluate x this way

why?
we will not form A−1, but solve for x directly using Gaussian elimination.

David Semeraro (NCSA) CS 357 September 10, 2013 6 / 37

Matrix Inverse

formal solution to Ax = b is x = A−1b
BUT it is bad to evaluate x this way
why?

we will not form A−1, but solve for x directly using Gaussian elimination.

David Semeraro (NCSA) CS 357 September 10, 2013 6 / 37

Matrix Inverse

formal solution to Ax = b is x = A−1b
BUT it is bad to evaluate x this way
why?
we will not form A−1, but solve for x directly using Gaussian elimination.

David Semeraro (NCSA) CS 357 September 10, 2013 6 / 37

Why do we care?

Open questions:
How expensive is it to solve Ax = b?
What problems (errors) will we encounter solving Ax = b?
Some matrices are easy/cheap to use: diagonal, tridiagonal, etc.

I are there others? what makes something a ”good” matrix numerically?
I are there bad ones? how do we identify them numerically?

what do actual numerical analysts, engineers, developers, etc use?!?!

David Semeraro (NCSA) CS 357 September 10, 2013 7 / 37

Formal Solution when A is n× n

The formal solution to Ax = b is

x = A−1b

where A is n× n.
If A−1 exists then A is said to be nonsingular.
If A−1 does not exist then A is said to be singular.

David Semeraro (NCSA) CS 357 September 10, 2013 8 / 37

Formal Solution when A is n× n

If A−1 exists then
Ax = b =⇒ x = A−1b

but

Do not compute the solution to Ax = b by
finding A−1, and then multiplying b by A−1!

We see: x = A−1b

We do: Solve Ax = b by Gaussian elimination
or an equivalent algorithm

David Semeraro (NCSA) CS 357 September 10, 2013 9 / 37

Singularity of A

If an n× n matrix, A, is singular then
the columns of A are linearly dependent
the rows of A are linearly dependent
rank(A) < n
det(A) = 0
A−1 does not exist
a solution to Ax = b may not exist
If a solution to Ax = b exists, it is not unique

David Semeraro (NCSA) CS 357 September 10, 2013 10 / 37

Summary of Requirements for Solution of Ax = b

Given the n× n matrix A and the n× 1 vector, b
the solution to Ax = b exists and is unique for any b if and only if
rank(A) = n.

Recall: rank = # of linearly independent rows or columns

Recall: Range(A) = set of vectors y such that Ax = y for some x

David Semeraro (NCSA) CS 357 September 10, 2013 11 / 37

Solving a system

Ax = b

Three situations:
1 A is nonsingular: There exists a unique solution x = A−1b
2 A is singular and b ∈ Range(A): There are infinite solutions.
3 A is singular and b < Range(A): There no solutions.

1 A =

[
2 0
0 4

]
b =

[
1
8

]
, then x =

[
1/2

2

]
.

2 A =

[
2 0
0 0

]
b =

[
1
0

]
, then infinitely many solutions. x =

[
1/2
α

]
.

3 A =

[
2 0
0 0

]
b =

[
1
1

]
, then no solutions.

David Semeraro (NCSA) CS 357 September 10, 2013 12 / 37

What’s the big deal?cost

Look at 1D:
3 equations
3 unknowns
each unknown coupled to its neighbor

2x1 −x2 = 5.8
−x1 2x2 −x3 = 13.9

−x2 2x3 = 0.03

or  2 −1 0
−1 2 −1
0 −1 2

x1
x2
x3

 5.8
13.9
0.03



David Semeraro (NCSA) CS 357 September 10, 2013 13 / 37

Easy in 1d



2 −1
. . .
−1 2 −1

. . .
−1 2


n points in the grid
3 ∗ (n − 2) + 2 + 2 or about 3n
nonzeros in the matrix
trididagonal (easy)

David Semeraro (NCSA) CS 357 September 10, 2013 14 / 37

2D: harder



8 −1 −1
. . .

−1 −1 8 −1 −1
. . .

−1 −1 8


n points in one direction
n2 points in grid
about 9 nonzeros in each row
about 9n2 nonzeros in the matrix
n-banded (harder...we will see)

David Semeraro (NCSA) CS 357 September 10, 2013 15 / 37

3D: hardest

n points in one direction
n3 points in grid

about 27 nonzeros in each row
about 27n3 nonzeros in the
matrix
n2-banded (yikes!)

David Semeraro (NCSA) CS 357 September 10, 2013 16 / 37

Applications get harder and harder...

courtesy of LLNL courtesy of TrueGrid

courtesy of Rice courtesy of Warwick U.

David Semeraro (NCSA) CS 357 September 10, 2013 17 / 37

Solving is a problem...

dim unknowns storage
1D n 3n
2D n2 9n2

3D n3 27n3

David Semeraro (NCSA) CS 357 September 10, 2013 18 / 37

Moore...

David Semeraro (NCSA) CS 357 September 10, 2013 19 / 37

What’s the problem?

humans: milliFLOPS
hand calculators: 10 FLOPS
desktops: a few GFLOPS (109 FLOPS)

look at the basic operations!

David Semeraro (NCSA) CS 357 September 10, 2013 20 / 37

Big-O

How to measure the impact of n on algorithmic cost?

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) |∃c, n0 > 0 : 0 6 f (n) 6 cg(n), ∀n > n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 6 f (n) 6 cg(n) is
satisfied.

assume non-negative functions (otherwise add | · |) to the definitions
f (n) ∈ O(g(n)) represents an asymptotic upper bound on f (n) up to a
constant
example: f (n) = 3

√
n + 2 log n + 8n + 85n2 ∈ O(n2)

David Semeraro (NCSA) CS 357 September 10, 2013 21 / 37

Big-O (Omicron)
asymptotic upper bound

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) |∃c, n0 > 0 : 0 6 f (n) 6 cg(n), ∀n > n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 6 f (n) 6 cg(n) is
satisfied.

David Semeraro (NCSA) CS 357 September 10, 2013 22 / 37

Big-Omega
asymptotic lower bound

Ω(·)
Let g(n) be a function of n. Then define

Ω(g(n)) = {f (n) |∃c, n0 > 0 : 0 6 cg(n) 6 f (n), ∀n > n0}

That is, f (n) ∈ Ω(g(n)) if there is a constant c such that 0 6 cg(n) 6 f (n) is
satisfied.

David Semeraro (NCSA) CS 357 September 10, 2013 23 / 37

Big-Theta
asymptotic tight bound

Θ(·)
Let g(n) be a function of n. Then define

Θ(g(n)) = {f (n) |∃c1, c2, n0 > 0 : 0 6 c1g(n) 6 f (n) 6 c2g(n), ∀n > n0}

Equivalently, Θ(g(n)) = O(g(n)) ∩Ω(g(n)).

David Semeraro (NCSA) CS 357 September 10, 2013 24 / 37

BLAS

Basic Linear Algebra Subprograms (BLAS) interface introduced APIs for
common linear algebra tasks

Level 1: vector operations (dot products, vector norms, etc) e.g.

y← αx + y

Level 2: matrix-vector operations, e.g.

y← αAx + By

Level 3: matrix-matrix operations, e.g.

C← αAB + βC

optimized versions of the reference BLAS are used everyday: ATLAS, etc.

David Semeraro (NCSA) CS 357 September 10, 2013 25 / 37

vec-vec, mat-vec, mat-mat

inner product of u and v both [n× 1]

σ = uTv = u1v1 + · · ·+ unvn

→ n multiplies, n − 1 additions
→ O(n) flops

David Semeraro (NCSA) CS 357 September 10, 2013 26 / 37

vec-vec, mat-vec, mat-mat

mat-vec of A ([n× n]) and u ([n× 1])

1 for i = 1, . . . , n
2 for j = 1, . . . , n
3 v(i) = a(i, j)u(j) + v(i)
4 end

5 end

→ n2 multiplies, n2 additions
→ O(n2) flops

David Semeraro (NCSA) CS 357 September 10, 2013 27 / 37

vec-vec, mat-vec, mat-mat

mat-mat of A ([n× n]) and B ([n× n])

1 for j = 1, . . . , n
2 for i = 1, . . . , n
3 for k = 1, . . . , n
4 C(k, j) = A(k, i)B(i, j) + C(k, j)
5 end

6 end

7 end

→ n3 multiplies, n3 additions
→ O(n3) flops

David Semeraro (NCSA) CS 357 September 10, 2013 28 / 37

vec-vec, mat-vec, mat-mat

Operation FLOPS
uTv O(n)
Au O(n2)
AB O(n3)

David Semeraro (NCSA) CS 357 September 10, 2013 29 / 37

Gaussian Elimination

Solving Diagonal Systems
Solving Triangular Systems
Gaussian Elimination Without Pivoting

I Hand Calculations
I Cartoon Version
I The Algorithm

Gaussian Elimination with Pivoting
I Row or Column Interchanges, or Both
I Implementation

David Semeraro (NCSA) CS 357 September 10, 2013 30 / 37

Solving Diagonal Systems

The system defined by

A =

1 0 0
0 3 0
0 0 5

 b =

 −1
6

−15



is equivalent to
x1 = −1

3x2 = 6
5x3 = −15

The solution is

x1 = −1 x2 =
6
3
= 2 x3 =

−15
5

= −3

David Semeraro (NCSA) CS 357 September 10, 2013 31 / 37

Solving Diagonal Systems

The system defined by

A =

1 0 0
0 3 0
0 0 5

 b =

 −1
6

−15


is equivalent to

x1 = −1
3x2 = 6

5x3 = −15

The solution is

x1 = −1 x2 =
6
3
= 2 x3 =

−15
5

= −3

David Semeraro (NCSA) CS 357 September 10, 2013 31 / 37

Solving Diagonal Systems

The system defined by

A =

1 0 0
0 3 0
0 0 5

 b =

 −1
6

−15


is equivalent to

x1 = −1
3x2 = 6

5x3 = −15

The solution is

x1 = −1 x2 =
6
3
= 2 x3 =

−15
5

= −3

David Semeraro (NCSA) CS 357 September 10, 2013 31 / 37

Solving Diagonal Systems

Listing 1: Diagonal System Solution
1 given A, b
2 for i = 1 . . . n
3 xi = bi/ai,i

4 end

In Python:

1 >>> import numpy as np

2 >>> A = np.array(... % A is a diagonal matrix

3 >> b = np.array(...

4 >> x = np.linalg.solve(A,b)

This is the only place where element-by-element division (./) has anything to
do with solving linear systems of equations.

David Semeraro (NCSA) CS 357 September 10, 2013 32 / 37

Operations?

Try...
Sketch out an operation count to solve a diagonal system of equations...

cheap!
one division n times −→ O(n) FLOPS

David Semeraro (NCSA) CS 357 September 10, 2013 33 / 37

Operations?

Try...
Sketch out an operation count to solve a diagonal system of equations...

cheap!
one division n times −→ O(n) FLOPS

David Semeraro (NCSA) CS 357 September 10, 2013 33 / 37

Triangular Systems

The generic lower and upper triangular matrices are

L =


l11 0 · · · 0
l21 l22 0
...

. . .
...

ln1 · · · lnn


and

U =


u11 u12 · · · u1n
0 u22 u2n
...

. . .
...

0 · · · unn


The triangular systems

Ly = b Ux = c

are easily solved by forward substitution and backward substitution,
respectively

David Semeraro (NCSA) CS 357 September 10, 2013 34 / 37

Solving Triangular Systems

A =

−2 1 2
0 3 −2
0 0 4

 b =

 9
−1

8



is equivalent to

−2x1 + x2 + 2x3 = 9
3x2 + −2x3 = −1

4x3 = 8

Solve in backward order (last equation is solved first)

x3 =
8
4
= 2 x2 =

1
3
(−1 + 2x3) =

3
3
= 1

x1 =
1

−2
(9 − x2 − 2x3) =

4
−2

= −2

David Semeraro (NCSA) CS 357 September 10, 2013 35 / 37

Solving Triangular Systems

A =

−2 1 2
0 3 −2
0 0 4

 b =

 9
−1

8


is equivalent to

−2x1 + x2 + 2x3 = 9
3x2 + −2x3 = −1

4x3 = 8

Solve in backward order (last equation is solved first)

x3 =
8
4
= 2 x2 =

1
3
(−1 + 2x3) =

3
3
= 1

x1 =
1

−2
(9 − x2 − 2x3) =

4
−2

= −2

David Semeraro (NCSA) CS 357 September 10, 2013 35 / 37

Solving Triangular Systems

A =

−2 1 2
0 3 −2
0 0 4

 b =

 9
−1

8


is equivalent to

−2x1 + x2 + 2x3 = 9
3x2 + −2x3 = −1

4x3 = 8

Solve in backward order (last equation is solved first)

x3 =
8
4
= 2 x2 =

1
3
(−1 + 2x3) =

3
3
= 1

x1 =
1

−2
(9 − x2 − 2x3) =

4
−2

= −2

David Semeraro (NCSA) CS 357 September 10, 2013 35 / 37

Solving Triangular Systems

Solving for x1, x2, . . . , xn for a lower triangular system is called forward
substitution.

1 given L, b
2 x1 = b1/`11

3 for i = 2 . . . n
4 s = bi

5 for j = 1 . . . i − 1
6 s = s − `i,jxj

7 end

8 xi = s/`i,i
9 end

Using forward or backward substitution is sometimes referred to as performing
a triangular solve.

David Semeraro (NCSA) CS 357 September 10, 2013 36 / 37

Solving Triangular Systems

Solving for x1, x2, . . . , xn for a lower triangular system is called forward
substitution.

1 given L, b
2 x1 = b1/`11

3 for i = 2 . . . n
4 s = bi

5 for j = 1 . . . i − 1
6 s = s − `i,jxj

7 end

8 xi = s/`i,i
9 end

Using forward or backward substitution is sometimes referred to as performing
a triangular solve.

David Semeraro (NCSA) CS 357 September 10, 2013 36 / 37

Operations?

Try...
Sketch out an operation count to solve a triangular system of equations...

cheap!
begin in the bottom corner: 1 div
row -2: 1 mult, 1 add, 1 div, or 3 FLOPS
row -3: 2 mult, 2 add, 1 div, or 5 FLOPS
row -4: 3 mult, 3 add, 1 div, or 7 FLOPS
...
row -j: about 2j FLOPS

Total FLOPS?
∑n

j=1 2j = 2 n(n+1)
2 or O(n2) FLOPS

David Semeraro (NCSA) CS 357 September 10, 2013 37 / 37

Operations?

Try...
Sketch out an operation count to solve a triangular system of equations...

cheap!
begin in the bottom corner: 1 div
row -2: 1 mult, 1 add, 1 div, or 3 FLOPS
row -3: 2 mult, 2 add, 1 div, or 5 FLOPS
row -4: 3 mult, 3 add, 1 div, or 7 FLOPS
...
row -j: about 2j FLOPS

Total FLOPS?
∑n

j=1 2j = 2 n(n+1)
2 or O(n2) FLOPS

David Semeraro (NCSA) CS 357 September 10, 2013 37 / 37

