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Naive Gaussian Elimination Algorithm

Forward Elimination
+ Backward substitution
= Naive Gaussian Elimination
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Goals for today. . .

Identify why our basic GE method is “naive”: identify where the errors
come from?

I division by zero, near-zero

Propose strategies to eliminate the errors
I partial pivoting, complete pivoting, scaled partial pivoting

Investigate the cost: does pivoting cost too much?
Try to answer “How accurately can we solve a system with or without
pivoting?”

I Analysis tools: norms, condition number, . . .
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Why is our basic GE “naive”?

Example

A =

0 2 3
4 5 6
7 8 9


Example

A =

1e − 10 2 3
4 5 6
7 8 9


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The Need for Pivoting

Solve:

A =


2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

 b =


−4

5
7
7


Note that there is nothing ”wrong” with this system. A is full rank. The solution
exists and is unique.
Form the augmented system.

2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

∣∣∣∣∣∣∣∣
−4

5
7
7


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The Need for Pivoting

Subtract 1/2 times the first row from the second row,
add 3/2 times the first row to the third row,
add 1/2 times the first row to the fourth row.
The result of these operations is:

2 4 −2 −2
0 0 5 −2
0 3 5 −5
0 3 5 −4

∣∣∣∣∣∣∣∣
−4

7
1
5


The next stage of Gaussian elimination will not work because there is a zero
in the pivot location, ã22.
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The Need for Pivoting

Swap second and fourth rows of the augmented matrix.
2 4 −2 −2
0 3 5 −4
0 3 5 −5
0 0 5 −2

∣∣∣∣∣∣∣∣
−4

5
1
7


Continue with elimination: subtract (1 times) row 2 from row 3.

2 4 −2 −2
0 3 5 −4
0 0 0 −1
0 0 5 −2

∣∣∣∣∣∣∣∣
−4

5
−4

7


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The Need for Pivoting

Another zero has appear in the pivot position. Swap row 3 and row 4.
2 4 −2 −2
0 3 5 −4
0 0 5 −2
0 0 0 −1

∣∣∣∣∣∣∣∣
−4

5
7

−4


The augmented system is now ready for backward substitution.
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another example

[
ε 1
1 1

] [
x1
x2

]
=

[
1
2

]
Example
With Naive GE, [

ε 1
0 (1 − 1

ε
)

] [
x1
x2

]
=

[
1

2 − 1
ε

]
Solving for x1 and x2 we get

x2 =
2 − 1/ε
1 − 1/ε

x1 =
1 − x2

ε

For ε ≈ 10−20, x1 ≈ 0, x2 ≈ 1
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Pivoting Strategies

Partial Pivoting: Exchange only rows
Exchanging rows does not affect the order of the xi

For increased numerical stability, make sure the largest possible pivot
element is used. This requires searching in the partial column below the
pivot element.
Partial pivoting is usually sufficient.
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Partial Pivoting

To avoid division by zero, swap the row having the zero pivot with one of the
rows below it.

0

*

Rows completed in 
forward elimination.

Rows to search for a 
more favorable pivot 
element.

Row with zero pivot element

To minimize the effect of roundoff, always choose the row that puts the largest
pivot element on the diagonal, i.e., find ip such that |aip,i| = max(|ak,i|) for
k = i, . . . , n
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Partial Pivoting: Usually sufficient, but not always

Partial pivoting is usually sufficient
Consider [

2 2c
1 1

∣∣∣∣ 2c
2

]
With Partial Pivoting, the first row is the pivot row:[

2 2c
0 1 − c

∣∣∣∣ 2c
2 − c

]
and for large c: [

2 2c
0 −c

∣∣∣∣ 2c
−c

]
so that y = 1 and x = 0. (exact is x = y = 1)
The pivot is selected as the largest in the column, but it should be the
largest relative to the full submatrix.
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More Pivoting Strategies

Full (or Complete) Pivoting: Exchange both rows and columns
Column exchange requires changing the order of the xi

For increased numerical stability, make sure the largest possible pivot
element is used. This requires searching in the pivot row, and in all rows
below the pivot row, starting the pivot column.
Full pivoting is less susceptible to roundoff, but the increase in stability
comes at a cost of more complex programming (not a problem if you use
a library routine) and an increase in work associated with searching and
data movement.
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Full Pivoting

0

*

Rows completed in 
forward elimination.

Columns to search for a more 
favorable pivot element.

Row with zero pivot element

Rows to search for a 
more favorable pivot 
element.

*
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Scaled Partial Pivoting

We simulate full pivoting by using a scale with partial pivoting.
pick pivot element as the largest relative entry in the column (relative to
the other entries in the row)
do not swap, just keep track of the order of the pivot rows
call this vector ` = [`1, . . . , `n].
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SPP Process
1 Determine a scale vector s. For each row

si = max
16j6n

|aij|

2 initialize ` = [`1, . . . , `n] = [1, . . . , n].
3 select row j to be the row with the largest ratio

|a`i1|

s`i

1 6 i 6 n

4 swap `j with `1 in `
5 Now we need n − 1 multipliers for the first column:

m1 =
a`i1

a`11

6 So the index to the rows are being swapped, NOT the actual row vectors
which would be expensive

7 finally use the multiplier m1 times row `1 to subtract from rows `i for
2 6 i 6 n
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SPP Process continued

1 For the second column in forward elimination, we select row j that yields
the largest ratio of

|a`i,2|

s`i

2 6 i 6 n

2 swap `j with `2 in `
3 Now we need n − 2 multipliers for the second column:

m2 =
a`i,2

a`22

4 finally use the multiplier m2 times row `2 to subtract from rows `i for
3 6 i 6 n

5 the process continues for row k
6 note: scale factors are not updated

David Semeraro (NCSA) CS 357 September 17, 2013 17 / 41



An Example

Consider 2 4 −2
1 3 4
5 2 0

x1
x2
x3

 =

 6
−1
2


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Back Substitution. . .

1 The first equation corresponds to the last index `n:

a`nnxn = b`n ⇒ xn =
b`n

a`nn

2 The second equation corresponds to the second to last index `n−1:

xn−1 =
1

a`n−1n−1

(
b`n−1 − a`n−1nxn

)
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The Algorithms

Listing 1: (forward) GE with SPP
1 Initialize ` = [1, . . . , n]
2 Set s to be the max |aij| in each row

3 for k = 1 to n
4 rmax = 0
5 for i = k to n
6 r = |a`ik/s`i |

7 if(r > rmax)
8 rmax = r
9 j = i

10 end

11 swap `j and `k
12 for i = k + 1 to n
13 xmult = a`ik/a`kk

14 a`ik = xmult
15 for j = k + 1 to n
16 a`ij = a`ij − xmult · a`k j

17 end

18 end

19 end

See Gauss algorithm on page 267 of NMC6 (p285 NMC5)
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The Algorithms
Note: the multipliers are stored in the location a`ik in the text

Listing 2: (back solve) GE with SPP
1 for k = 1 to n − 1
2 for i = k + 1 to n
3 b`i = b`i − a`ikb`k

4 end

5 end

6 xn = b`n/a`nn

7 for i = n − 1 down to 1
8 sum = b`i

9 for j = i + 1 to n
10 sum = sum − a`ijxj

11 end

12 xi = sum/a`i,i

13 end

See Gauss algorithm on page 269 of NMC6 (p267 NMC5)
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Geometric Interpretation of Singularity

Consider a 2× 2 system describing two lines that intersect

y = −2x + 6

y =
1
2

x + 1

The matrix form of this equation is[
2 1

−1/2 1

] [
x1
x2

]
=

[
6
1

]
The equations for two parallel but not intersecting lines are[

2 1
2 1

] [
x1
x2

]
=

[
6
5

]
Here the coefficient matrix is singular (rank(A) = 1), and the system is
inconsistent
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Geometric Interpretation of Singularity

The equations for two parallel and coincident lines are[
2 1
2 1

] [
x1
x2

]
=

[
6
6

]
The equations for two nearly parallel lines are[

2 1
2 + δ 1

] [
x1
x2

]
=

[
6

6 + δ

]
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Geometric Interpretation of Singularity

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is nonsingular

0 1 2 3 4

0

2

4

6

8
A and b are inconsistent

A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is ill conditioned
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Effect of Perturbations to b

Consider the solution of a 2× 2 system where

b =

[
1

2/3

]
One expects that the exact solutions to

Ax =

[
1

2/3

]
and Ax =

[
1

0.6667

]
will be different. Should these solutions be a lot different or a little different?
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Norms
Vectors:

‖x‖p =
(
|x1|

p + |x2|
p + . . . + |xn|

p)1/p

‖x‖1 = |x1|+ |x2|+ . . . + |xn| =

n∑
i=1

|xi|

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Matrices:

‖A‖ = max
x,0

‖Ax‖
‖x‖

‖A‖p = max
x,0

‖Ax‖p

‖x‖p

‖A‖1 = max
16j6n

m∑
i=1

|aij|

‖A‖∞ = max
16i6m

n∑
j=1

|aij|
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Effect of Perturbations to b

Perturb b with δb such that
‖δb‖
‖b‖

� 1,

The perturbed system is
A(x + δxb) = b + δb

The perturbations satisfy
Aδxb = δb

Analysis shows (see next two slides for proof) that

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxb‖
‖x‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Effect of Perturbations to b (Proof)

Let x + δxb be the exact solution to the perturbed system

A(x + δxb) = b + δb (1)

Expand
Ax + Aδxb = b + δb

Subtract Ax from left side and b from right side since Ax = b

Aδxb = δb

Left multiply by A−1

δxb = A−1δb (2)
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Effect of Perturbations to b (Proof, p. 2)

Take norm of equation (2)
‖δxb‖ = ‖A−1 δb‖

Applying consistency requirement of matrix norms

‖δxb‖ 6 ‖A−1‖‖δb‖ (3)

Similarly, Ax = b gives ‖b‖ = ‖Ax‖, and

‖b‖ 6 ‖A‖‖x‖ (4)

Rearrangement of equation (4) yields

1
‖x‖

6
‖A‖
‖b‖

(5)
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Effect of Perturbations to b (Proof)

Multiply Equation (4) by Equation (3) to get

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

(6)

Summary:

If x + δxb is the exact solution to the perturbed system

A(x + δxb) = b + δb

then
‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖
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Effect of Perturbations to A

Perturb A with δA such that
‖δA‖
‖A‖

� 1,

The perturbed system is

(A + δA)(x + δxA) = b

Analysis shows that
‖δxA‖
‖x + δxA‖

6 ‖A‖‖A−1‖‖δA‖
‖A‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxA‖
‖x + δxA‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Effect of Perturbations to both A and b
Perturb both A with δA and b with δb such that

‖δA‖
‖A‖

� 1 and
‖δb‖
‖b‖

� 1

The perturbation satisfies

(A + δA)(x + δx) = b + δb

Analysis shows that

‖δx‖
‖x + δx‖

6
‖A‖‖A−1‖

1 − ‖A‖‖A−1‖‖δA‖
‖A‖

[
‖δA‖
‖A‖

+
‖δb‖
‖b‖

]

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δx‖
‖x + δx‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Condition number of A

The condition number
κ(A) ≡ ‖A‖‖A−1‖

indicates the sensitivity of the solution to perturbations in A and b. The
condition number can be measured with any p-norm.
The condition number is always in the range

1 6 κ(A) 6 ∞
κ(A) is a mathematical property of A
Any algorithm will produce a solution that is sensitive to
perturbations in A and b if κ(A) is large.
In exact math a matrix is either singular or non-singular.
κ(A) = ∞ for a singular matrix
κ(A) indicates how close A is to being numerically singular.
A matrix with large κ is said to be ill-conditioned
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Computational Stability

In Practice, applying Gaussian elimination with partial pivoting and back
substitution to Ax = b gives the exact solution, x̂, to the nearby problem

(A + E)x̂ = b where ‖E‖∞ 6 εm‖A‖∞
Gaussian elimination with partial pivoting and back substitution
“gives exactly the right answer to nearly the right question.”

— Trefethen and Bau
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Computational Stability

An algorithm that gives the exact answer to a problem that is near to the
original problem is said to be backward stable. Algorithms that are not
backward stable will tend to amplify roundoff errors present in the original
data. As a result, the solution produced by an algorithm that is not backward
stable will not necessarily be the solution to a problem that is close to the
original problem.
Gaussian elimination without partial pivoting is not backward stable for
arbitrary A.
If A is symmetric and positive definite, then Gaussian elimination without
pivoting in backward stable.
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The Residual

Let x̂ be the numerical solution to Ax = b. x̂ , x (x is the exact solution)
because of roundoff.
The residual measures how close x̂ is to satisfying the original equation

r = b − Ax̂

It is not hard to show that

‖x̂ − x‖
‖x̂‖

6 κ(A)
‖r‖
‖b‖

Small ‖r‖ does not guarantee a small ‖x̂ − x‖.
If κ(A) is large the x̂ returned by Gaussian elimination and back substitution
(or any other solution method) is not guaranteed to be anywhere near the true
solution to Ax = b.
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Rules of Thumb

Applying Gaussian elimination with partial pivoting and back substitution
to Ax = b yields a numerical solution x̂ such that the residual vector
r = b − Ax̂ is small even if the κ(A) is large.
If A and b are stored to machine precision εm, the numerical solution to
Ax = b by any variant of Gaussian elimination is correct to d digits where

d = | log10(εm)|− log10 (κ(A))
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Rules of Thumb

d = | log10(εm)|− log10 (κ(A))

Example:
NUMPY computations have εm ≈ 2.2× 10−16. For a system with κ(A) ∼ 1010

the elements of the solution vector will have

d = | log10(2.2× 10−16)|− log10

(
1010)

= 16 − 10
= 6

correct (decimal) digits
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Summary of Limits to Numerical Solution of Ax = b

1 κ(A) indicates how close A is to being numerically singular
2 If κ(A) is “large”, A is ill-conditioned and even the best numerical

algorithms will produce a solution, x̂ that cannot be guaranteed to be
close to the true solution, x

3 In practice, Gaussian elimination with partial pivoting and back
substitution produces a solution with a small residual

r = b − Ax̂

even if κ(A) is large.
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Python and numpy

Consider the scalar equation

5x = 20 =⇒ x = (5)−120

The extension to a system of equations is, of course

Ax = b =⇒ x = A−1b

where A−1b is the formal solution to Ax = b
In numpy notation the system is solved with

1 x = np.linalg.solve(A,b)

David Semeraro (NCSA) CS 357 September 17, 2013 40 / 41



Python and numpy

Given an n× n matrix A, and an n× 1 vector b the \ operator performs a
sequence of tests on the A matrix. MATLAB attempts to solve the system with
the method that gives the least roundoff and the fewest operations.
When A is an n× n matrix the Python statement:

1 x = np.linalg.solve(A,b)

solves the linear system by using the LINPACK routines DGESV or
ZGESVṪhese routines solve a dense linear system using gausian elimination
with partial pivoting.
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