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Vector Operations

Addition and Subtraction
Multiplication by a scalar
Transpose
Linear Combinations of Vectors
Inner Product
Outer Product
Vector Norms
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Vector Addition and Subtraction

Addition and subtraction are element-by-element operations

c = a + b ⇐⇒ ci = ai + bi i = 1, . . . , n
d = a − b ⇐⇒ di = ai − bi i = 1, . . . , n

a =

1
2
3

 b =

3
2
1


a + b =

4
4
4

 a − b =

−2
0
2


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Multiplication by a Scalar

Multiplication by a scalar involves multiplying each element in the vector by
the scalar:

b = σa ⇐⇒ bi = σai i = 1, . . . , n

a =

4
6
8

 b =
a
2

=

2
3
4


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Vector Transpose

The transpose of a row vector is a column vector:

u =
[
1, 2, 3

]
then uT =

1
2
3


Likewise if v is the column vector

v =

4
5
6

 then vT =
[
4, 5, 6

]
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Linear Combinations

Combine scalar multiplication with addition

α


u1
u2
...

um

+ β


v1
v2
...

vm

 =


αu1 + βv1
αu2 + βv2

...
αum + βvm

 =


w1
w2
...

wm



r =

−2
1
3

 s =

1
0
3


t = 2r + 3s =

−4
2
6

+

3
0
9

 =

−1
2

15


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Linear Combinations
Any one vector can be created from an infinite combination of other “suitable”
vectors.

w =

[
4
2

]
= 4

[
1
0

]
+ 2

[
0
1

]

w = 6
[

1
0

]
− 2

[
1

−1

]

w =

[
2
4

]
− 2

[
−1

1

]

w = 2
[

4
2

]
− 4

[
1
0

]
− 2

[
0
1

]
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Linear Combinations

Graphical interpretation:
Vector tails can be
moved to convenient
locations
Magnitude and
direction of vectors is
preserved

[1,0]

[0,1]

[2,4]

[1,-1]

[4,2]
[-1,1]

[1,1]

0 1 2 3 4 5 6

0

1

2

3

4
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Vector Inner Product

In physics, analytical geometry, and engineering, the dot product has a
geometric interpretation

σ = x · y ⇐⇒ σ =

n∑
i=1

xiyi

x · y = ‖x‖2 ‖y‖2 cos θ
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Vector Inner Product

The inner product of x and y requires that x be a row vector y be a column
vector

[
x1 x2 x3 x4

] 
y1
y2
y3
y4

 = x1y1 + x2y2 + x3y3 + x4y4
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Vector Inner Product

For two n-element column vectors, u and v, the inner product is

σ = uTv ⇐⇒ σ =

n∑
i=1

uivi

The inner product is commutative so that
(for two column vectors)

uTv = vTu
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Computing the Inner Product in Matlab

The * operator performs the inner product if two vectors are compatible.

1 >> u = (0:3)’; % u and v are

2 >> v = (3:-1:0)’; % column vectors

3 >> s = u*v

4 ??? Error using ==> *

5 Inner matrix dimensions must agree.

6

7 >> s = u’*v

8 s =

9 4

10

11 >> t = v’*u

12 t =

13 4

14

15 >> dot(u,v)

16 ans =

17 4
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Vector Outer Product

The inner product results in a
scalar.
The outer product creates a rank-
one matrix:

A = uvT ⇐⇒ ai,j = uivj

Example
Outer product of two 4-element
column vectors

uvT =


u1
u2
u3
u4

 [v1 v2 v3 v4
]

=


u1v1 u1v2 u1v3 u1v4
u2v1 u2v2 u2v3 u2v4
u3v1 u3v2 u3v3 u3v4
u4v1 u4v2 u4v3 u4v4


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Computing the Outer Product in Matlab

The * operator performs the outer product if two vectors are compatible.

1 u = (0:4)’;

2 v = (4:-1:0)’;

3 A = u*v’

4 A =

5 0 0 0 0 0

6 4 3 2 1 0

7 8 6 4 2 0

8 12 9 6 3 0

9 16 12 8 4 0
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Vector Norms

Compare magnitude of scalars with the absolute value∣∣α∣∣ > ∣∣β∣∣
Compare magnitude of vectors with norms

‖x‖ > ‖y‖

There are several ways to compute ||x||. In other words the size of two vectors
can be compared with different norms.
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Vector Norms
Consider two element vectors, which lie in a plane

a = (4,2)

b = (2,4)

a = (4,2)c = (2,1)

Use geometric lengths to represent the magnitudes of the vectors

`a =
√

42 + 22 =
√

20, `b =
√

22 + 42 =
√

20, `c =
√

22 + 12 =
√

5

We conclude that
`a = `b and `a > `c

or
‖a‖ = ‖b‖ and ‖a‖ > ‖c‖
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The L2 Norm

The notion of a geometric length for 2D or 3D vectors can be extended
vectors with arbitrary numbers of elements.
The result is called the Euclidian or L2 norm:

‖x‖2 =
(
x2

1 + x2
2 + . . . + x2

n
)1/2

=

(
n∑

i=1

x2
i

)1/2

The L2 norm can also be expressed in terms of the inner product

‖x‖2 =
√

x · x =
√

xTx
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p-Norms

For any positive integer p

‖x‖p =
(
|x1|

p + |x2|
p + . . . + |xn|

p)1/p

The L1 norm is sum of absolute values

‖x‖1 = |x1| + |x2| + . . . + |xn| =

n∑
i=1

|xi|

The L∞ norm or max norm is

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Although p can be any positive number, p = 1, 2, ∞ are most commonly used.

L. Olson (UIUC) CS 357 September 8, 2009 18 / 72



Application of Norms

Are two vectors (nearly) equal?
Floating point comparison of two scalars with absolute value:∣∣α− β

∣∣∣∣α∣∣ < δ

where δ is a small tolerance.
Comparison of two vectors with norms:

‖y − z‖
‖z‖

< δ
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Application of Norms

Notice that
‖y − z‖
‖z‖

< δ

is not equivalent to
‖y‖− ‖z‖
‖z‖

< δ.

This comparison is important in convergence tests for sequences of vectors.
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Application of Norms

Creating a Unit Vector
Given u = [u1, u2, . . . , um]T, the unit vector in the direction of u is

û =
u
‖u‖2

Proof:

‖û‖2 =

∥∥∥∥ u
‖u‖2

∥∥∥∥
2

=
1
‖u‖2

‖u‖2 = 1

The following are not unit vectors

u
‖u‖1

u
‖u‖∞
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Orthogonal Vectors

From geometric interpretation of the inner product

u · v = ‖u‖2 ‖v‖2 cos θ

cos θ =
u · v

‖u‖2 ‖v‖2
=

uTv
‖u‖2 ‖v‖2

Two vectors are orthogonal when θ = π/2 or u · v = 0.
In other words

uTv = 0

if and only if u and v are orthogonal.
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Orthonormal Vectors

Orthonormal vectors are unit vectors that are orthogonal.
A unit vector has an L2 norm of one.
The unit vector in the direction of u is

û =
u
‖u‖2

Since
‖u‖2 =

√
u · u

it follows that u · u = 1 if u is a unit vector.
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Matrices

Columns and Rows of a Matrix are Vectors
Addition and Subtraction
Multiplication by a scalar
Transpose
Linear Combinations of Vectors
Matrix–Vector Product
Matrix–Matrix Product
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Notation

The matrix A with m rows and n columns looks like:

A =


a11 a12 · · · a1n
a21 a22 a2n
...

...
am1 · · · amn


aij = element in row i, and column j

In Matlab we can define a matrix with

1 >> A = [ ... ; ... ; ... ]

where semicolons separate lists of row elements.
The a2,3 element of the Matlab matrix A is A(2,3).
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Matrices Consist of Row and Column Vectors

As a collection of column vectors

A =

a(1)

∣∣∣∣∣∣∣∣∣∣
a(2)

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
a(n)



As a collection of row vectors

A =



a ′
(1)

a ′
(2)

...

a ′
(m)


A prime is used to designate a
row vector on this and the following
pages.
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Preview of the Row and Column View

Matrix and
vector operations

l
Row and column

operations
l

Element-by-element
operations
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Matrix Operations

Addition and subtraction
Multiplication by a Scalar
Matrix Transpose
Matrix–Vector Multiplication
Vector–Matrix Multiplication
Matrix–Matrix Multiplication
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Matrix Operations

Addition and subtraction
C = A + B

or
ci,j = ai,j + bi,j i = 1, . . . , m; j = 1, . . . , n

Multiplication by a Scalar
B = σA

or
bi,j = σai,j i = 1, . . . , m; j = 1, . . . , n

Note
Commas in subscripts are necessary when the subscripts are assigned
numerical values. For example, a2,3 is the row 2, column 3 element of matrix
A, whereas a23 is the 23rd element of vector a. When variables appear in
indices, such as aij or ai,j, the comma is optional
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Matrix Transpose

B = AT

or
bi,j = aj,i i = 1, . . . , m; j = 1, . . . , n

In Matlab

1 >> A = [0 0 0; 0 0 0; 1 2 3; 0 0 0]

2 A =

3 0 0 0

4 0 0 0

5 1 2 3

6 0 0 0

7

8 >> B = A’

9 B =

10 0 0 1 0

11 0 0 2 0

12 0 0 3 0
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Matrix–Vector Product

The Column View
I gives mathematical insight

The Row View
I easy to do by hand

The Vector View
I A square matrix rotates and stretches a vector
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Column View of Matrix–Vector Product

Consider a linear combination of a set of column vectors
{a(1), a(2), . . . , a(n)}. Each a(j) has m elements
Let xi be a set (a vector) of scalar multipliers

x1a(1) + x2a(2) + . . . + xna(n) = b

or
n∑

j=1

a(j)xj = b

Expand the (hidden) row index

x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn

 =


b1
b2
...

bm


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Column View of Matrix–Vector Product

Form a matrix with the a(j) as columnsa(1)

∣∣∣∣∣∣∣∣∣∣
a(2)

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
a(n)




x1
x2
...

xn

 =

b


Or, writing out the elements

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn




x1
x2
...

xn

 =



b1
b2

...

bm


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Column View of Matrix–Vector Product

Thus, the matrix-vector product is

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn




x1
x2
...

xn

 =



b1
b2

...

bm


Save space with matrix notation

Ax = b
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Column View of Matrix–Vector Product

The matrix–vector product b = Ax
produces a vector b from a linear
combination of the columns in A.

b = Ax ⇐⇒ bi =

n∑
j=1

aijxj

where x and b are column vectors
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Column View of Matrix–Vector Product

Listing 1: Matrix–Vector Multiplication by Columns
1 initialize: b = zeros(m, 1)

2 for j = 1, . . . , n
3 for i = 1, . . . , m
4 b(i) = A(i, j)x(j) + b(i)
5 end

6 end
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Compatibility Requirement

Inner dimensions must agree

A x = b
[m× n] [n× 1] = [m× 1]
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Row View of Matrix–Vector Product

Consider the following matrix–vector product written out as a linear
combination of matrix columns 5 0 0 −1

−3 4 −7 1
1 2 3 6




4
2

−3
−1



= 4

 5
−3

1

+ 2

 0
4
2

− 3

 0
−7

3

− 1

−1
1
6


This is the column view.
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Row View of Matrix–Vector Product

Now, group the multiplication and addition operations by row:

4

 5
−3

1

+ 2

 0
4
2

− 3

 0
−7

3

− 1

−1
1
6



=

 (5)(4) + (0)(2) + (0)(−3) + (−1)(−1)
(−3)(4) + (4)(2) + (−7)(−3) + (1)(−1)

(1)(4) + (2)(2) + (3)(−3) + (6)(−1)

 =

 21
16
−7



Final result is identical to that obtained with the column view.
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Row View of Matrix–Vector Product

Product of a 3× 4 matrix, A, with a 4× 1 vector, x, looks like
a ′
(1)

a ′
(2)

a ′
(3)




x1
x2
x3
x4

 =

a ′
(1) · x

a ′
(2) · x

a ′
(3) · x

 =

b1
b2
b3



where a ′
(1), a ′

(2), and a ′
(3), are the row vectors constituting the A matrix.

The matrix–vector product b = Ax
produces elements in b by forming
inner products of the rows of A with x.
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Row View of Matrix–Vector Product

i

=
i

x yia'(i )
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Vector View of Matrix–Vector Product

If A is square, the product Ax has the effect of stretching and rotating x.
Pure stretching of the column vector2 0 0

0 2 0
0 0 2

1
2
3

 =

2
4
6


Pure rotation of the column vector0 −1 0

1 0 0
0 0 1

1
0
0

 =

0
1
0


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Vector–Matrix Product
Matrix–vector product

=

n   1m   n m   1

Vector–Matrix product

=

1    m m    n 1    n
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Vector–Matrix Product

Compatibility Requirement: Inner dimensions must agree

u A = v
[1×m] [m× n] = [1× n]
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Matrix–Matrix Product

Computations can be organized in six different ways We’ll focus on just two
Column View — extension of column view of matrix–vector product
Row View — inner product algorithm, extension of column view of
matrix–vector product
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Column View of Matrix–Matrix Product

The product AB produces a matrix C. The columns of C are linear
combinations of the columns of A.

AB = C ⇐⇒ c(j) = Ab(j)

c(j) and b(j) are column vectors.

ji

=

A b( j ) c( j )

j

r

The column view of the matrix–matrix product AB = C is helpful because it
shows the relationship between the columns of A and the columns of C.
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Inner Product (Row) View of Matrix–Matrix Product

The product AB produces a matrix C. The cij element is the inner product of
row i of A and column j of B.

AB = C ⇐⇒ cij = a ′
(i)b(j)

a ′
(i) is a row vector, b(j) is a column vector.

j

i

=
cij

r

j
i

b( j  ) cija'(i  )

The inner product view of the matrix–matrix product is easier to use for hand
calculations.
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Matrix–Matrix Product Summary

The Matrix–vector product looks like:
• • •
• • •
• • •
• • •


••
•

 =


•
•
•
•


The vector–Matrix product looks like:

[
• • • •

] 
• • •
• • •
• • •
• • •

 =
[
• • •

]
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Matrix–Matrix Product Summary

The Matrix–Matrix product looks like:
• • •
• • •
• • •
• • •


• • • •• • • •
• • • •

 =


• • • •
• • • •
• • • •
• • • •


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Matrix–Matrix Product Summary

Compatibility Requirement

A B = C
[m× r] [r× n] = [m× n]

Inner dimensions must agree
Also, in general

AB , BA
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Mathematical Properties of Vectors and Matrices

Linear Independence
Vector Spaces
Subspaces associated with matrices
Matrix Rank
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Linear Independence

Two vectors lying along the same line are not independent

u =

1
1
1

 and v = −2u =

−2
−2
−2


Any two independent vectors, for example,

v =

−2
−2
−2

 and w =

0
0
1


define a plane. Any other vector in this plane of v and w can be represented
by

x = αv + βw

x is linearly dependent on v and w because it can be formed by a linear
combination of v and w.
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Linear Independence

A set of vectors is linearly independent if it is impossible to use a linear
combination of vectors in the set to create another vector in the set.
Linear independence is easy to see for vectors that are orthogonal, for
example, 

4
0
0
0

 ,


0

−3
0
0

 ,


0
0
1
0


are linearly independent.
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Linear Independence

Consider two linearly independent vectors, u and v.
If a third vector, w, cannot be expressed as a linear combination of u and v,
then the set {u, v, w} is linearly independent.
In other words, if {u, v, w} is linearly independent then

αu + βv = δw

can be true only if α = β = δ = 0.
More generally, if the only solution to

α1v(1) + α2v(2) + · · ·+ αnv(n) = 0 (1)

is α1 = α2 = . . . = αn = 0, then the set {v(1), v(2), . . . , v(n)} is linearly
independent. Conversely, if equation (1) is satisfied by at least one nonzero
αi, then the set of vectors is linearly dependent.
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Linear Independence

Let the set of vectors {v(1), v(2), . . . , v(n)} be organized as the columns of a
matrix. Then the condition of linear independence isv(1)

∣∣∣∣∣∣∣∣∣∣
v(2)

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣
v(n)



α1
α2
...
αn

 =


0
0
...
0

 (2)

The columns of the m × n matrix, A, are linearly independent if and
only if x = (0, 0, . . . , 0)T is the only n element column vector that satis-
fies Ax = 0.
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Vector Spaces

Spaces and Subspaces
Basis of a Subspace
Subspaces associated with Matrices
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Spaces and Subspaces

Group vectors according to number of elements they have. Vectors from
these different groups cannot be mixed.

R1 = Space of all vectors with one element.
These vectors define the points along a line.

R2 = Space of all vectors with two elements.
These vectors define the points in a plane.

Rn = Space of all vectors with n elements.
These vectors define the points in an
n-dimensional space (hyperplane).
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Subspaces

The three vectors

u =

 1
2
0

 , v =

−2
1
3

 , w =

 3
1

−3

 ,

lie in the same plane. The vectors
have three elements each, so they
belong to R3, but they span a
subspace of R3.

-4

-2

0

2

4

-4

-2

0

2

4

-5

0

5

x axis

[-2,1,3] T

[1,2,0]T

[3,1,-3] T

y axis
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Basis and Dimension of a Subspace

A basis for a subspace is a set of linearly independent vectors that
span the subspace.
Since a basis set must be linearly independent, it also must have the
smallest number of vectors necessary to span the space. (Each vector
makes a unique contribution to spanning some other direction in the
space.)
The number of vectors in a basis set is equal to the dimension of the
subspace that these vectors span.
Mutually orthogonal vectors (an orthogonal set) form convenient basis
sets, but basis sets need not be orthogonal.
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Subspaces Associated with Matrices

The matrix–vector product
y = Ax

creates y from a linear combination of the columns of A
The column vectors of A form a basis for the column space or range of A.
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Matrix Rank

The rank of a matrix, A, is the number of linearly independent columns in
A.
rank(A) is the dimension of the column space of A.
Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

1
0
0

 v =

0
1
0

 w =

1
1
0


Do these vectors span R3?
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Matrix Rank

The rank of a matrix, A, is the number of linearly independent columns in
A.
rank(A) is the dimension of the column space of A.
Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

 1
0

0.00001

 v =

0
1
0

 w =

1
1
0


Do these vectors span R3?
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Matrix Rank

The rank of a matrix, A, is the number of linearly independent columns in
A.
rank(A) is the dimension of the column space of A.
Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =

 1
0
εm

 v =

0
1
0

 w =

1
1
0


Do these vectors span R3?
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Matrix Rank (2)

We can use Matlab’s built-in rank function for exploratory calculations on
(relatively) small matrices

1 >> A = [1 0 0; 0 1 0; 0 0 1e-5] % A(3,3) is small

2 A =

3 1.0000 0 0

4 0 1.0000 0

5 0 0 0.0000

6

7 >> rank(A)

8 ans =

9 3
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Matrix Rank (2)

Repeat numerical calculation of rank with smaller diagonal entry

1 >> A(3,3) = eps/2 % A(3,3) is even smaller

2 A =

3 1.0000 0 0

4 0 1.0000 0

5 0 0 0.0000

6

7 >> rank(A)

8 ans =

9 2

Even though A(3,3) is not identically zero, it is small enough that the matrix is
numerically rank-deficient
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Special Matrices

Diagonal Matrices
Tridiagonal Matrices
The Identity Matrix
The Matrix Inverse
Symmetric Matrices
Positive Definite Matrices
Orthogonal Matrices
Permutation Matrices
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Diagonal Matrices

Diagonal matrices have non-zero elements only on the main diagonal.

C = diag (c1, c2, . . . , cn) =


c1 0 · · · 0
0 c2 0
...

. . .
...

0 0 · · · cn


The diag function is used to either create a diagonal matrix from a vector, or
and extract the diagonal entries of a matrix.

1 >> x = [1 -5 2 6];

2 >> A = diag(x)

3 A =

4 1 0 0 0

5 0 -5 0 0

6 0 0 2 0

7 0 0 0 6
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Diagonal Matrices

The diag function can also be used to create a matrix with elements only on a
specified super-diagonal or sub-diagonal. Doing so requires using the
two-parameter form of diag:

1 >> diag([1 2 3],1)

2 ans =

3 0 1 0 0

4 0 0 2 0

5 0 0 0 3

6 0 0 0 0

7 >> diag([4 5 6],-1)

8 ans =

9 0 0 0 0

10 4 0 0 0

11 0 5 0 0

12 0 0 6 0
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Identity Matrices

An identity matrix is a square matrix with ones on the main diagonal.

I =

1 0 0
0 1 0
0 0 1


An identity matrix is special because

AI = A and IA = A

for any compatible matrix A. This is like multiplying by one in scalar arithmetic.
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Identity Matrices

Identity matrices can be created with the built-in eye function.

1 >> I = eye(4)

2 I =

3 1 0 0 0

4 0 1 0 0

5 0 0 1 0

6 0 0 0 1

Sometimes In is used to designate an identity matrix with n rows and n
columns. For example,

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Identity Matrices

A non-square, identity-like matrix can be created with the two-parameter form
of the eye function:

1 >> J = eye(3,5)

2 J =

3 1 0 0 0 0

4 0 1 0 0 0

5 0 0 1 0 0

6

7 >> K = eye(4,2)

8 K =

9 1 0

10 0 1

11 0 0

12 0 0

J and K are not identity matrices!
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Functions to Create Special Matrices

Matrix Matlab function

Diagonal diag

Identity eye

Inverse inv
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Symmetric Matrices

If A = AT, then A is called a symmetric matrix. 5 −2 −1
−2 6 −1
−1 −1 3


Note
B = ATA is symmetric for any (real) matrix A.
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Tridiagonal Matrices


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 .

The diagonal elements need not be equal. The general form of a tridiagonal
matrix is

A =



a1 b1
c2 a2 b2

c3 a3 b3
. . . . . . . . .

cn−1 an−1 bn−1
cn an


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