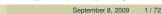
Lecture 5a

Linear Algebra Recall

L. Olson

Department of Computer Science University of Illinois at Urbana-Champaign

September 8, 2009



Vector Operations

- Addition and Subtraction
- Multiplication by a scalar
- Transpose
- Linear Combinations of Vectors
- Inner Product
- Outer Product
- Vector Norms

Vector Addition and Subtraction

Addition and subtraction are element-by-element operations

$$c = a + b \iff c_i = a_i + b_i \quad i = 1, \dots, n$$

 $d = a - b \iff d_i = a_i - b_i \quad i = 1, \dots, n$

$$a = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad b = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
$$a + b = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} \qquad a - b = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$

Multiplication by a Scalar

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

$$b = \sigma a \iff b_i = \sigma a_i \quad i = 1, \ldots, n$$

$$a = \begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix} \qquad b = \frac{a}{2} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Vector Transpose

The *transpose* of a row vector is a column vector:

$$u = \begin{bmatrix} 1, 2, 3 \end{bmatrix}$$
 then $u^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Likewise if v is the column vector

$$v = egin{bmatrix} 4 \ 5 \ 6 \end{bmatrix}$$
 then $v^T = egin{bmatrix} 4, 5, 6 \end{bmatrix}$

Linear Combinations

Combine scalar multiplication with addition

$$\alpha \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} + \beta \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} = \begin{bmatrix} \alpha u_1 + \beta v_1 \\ \alpha u_2 + \beta v_2 \\ \vdots \\ \alpha u_m + \beta v_m \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$$

$$r = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} \qquad s = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

$$t = 2r + 3s = \begin{bmatrix} -4 \\ 2 \\ 6 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 9 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 15 \end{bmatrix}$$

Linear Combinations

Any one vector can be created from an infinite combination of other "suitable" vectors.

$$w = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$w = 6 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$w = \begin{bmatrix} 2 \\ 4 \end{bmatrix} - 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

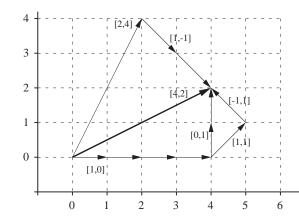
$$w = 2\begin{bmatrix} 4 \\ 2 \end{bmatrix} - 4\begin{bmatrix} 1 \\ 0 \end{bmatrix} - 2\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

L. Olson (UIUC)

Linear Combinations

Graphical interpretation:

- Vector tails can be moved to convenient locations
- Magnitude and direction of vectors is preserved



Vector Inner Product

In physics, analytical geometry, and engineering, the **dot product** has a geometric interpretation

$$\sigma = x \cdot y \iff \sigma = \sum_{i=1}^{n} x_i y_i$$
$$x \cdot y = \|x\|_2 \|y\|_2 \cos \theta$$

9/72

L. Olson (UIUC) CS 357 September 8, 2009

Vector Inner Product

The inner product of x and y requires that x be a row vector y be a column vector

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4$$

10 / 72

September 8, 2009

Vector Inner Product

For two n-element *column* vectors, u and v, the inner product is

$$\sigma = u^T v \iff \sigma = \sum_{i=1}^n u_i v_i$$

The inner product is commutative so that (for two column vectors)

$$u^T v = v^T u$$

L. Olson (UIUC) CS 357 September 8, 2009

Computing the Inner Product in Matlab

The * operator performs the inner product if two vectors are compatible.

```
1 >> u = (0:3)';
                       % u and v are
2 >> v = (3:-1:0)': % column vectors
3 \gg s = u*v
4 ??? Error using ==> *
5 Inner matrix dimensions must agree.
_{7} >> s = u'*v
8 S =
11 >> t = v'*u
12 t =
13
15 >> dot(u,v)
16 ans =
17
```

Vector Outer Product

The inner product results in a scalar.

The *outer product* creates a rankone matrix:

$$A = uv^T \iff a_{i,j} = u_i v_j$$

Example

Outer product of two 4-element column vectors

$$uv^{T} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} & v_{4} \end{bmatrix}$$

$$=\begin{bmatrix} u_1v_1 & u_1v_2 & u_1v_3 & u_1v_4 \\ u_2v_1 & u_2v_2 & u_2v_3 & u_2v_4 \\ u_3v_1 & u_3v_2 & u_3v_3 & u_3v_4 \\ u_4v_1 & u_4v_2 & u_4v_3 & u_4v_4 \end{bmatrix}$$

Computing the Outer Product in Matlab

The * operator performs the outer product if two vectors are compatible.

Vector Norms

Compare magnitude of scalars with the absolute value

$$|\alpha| > |\beta|$$

Compare magnitude of vectors with norms

$$||x|| > ||y||$$

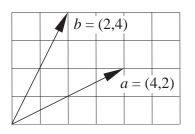
There are several ways to compute ||x||. In other words the size of two vectors can be compared with different norms.

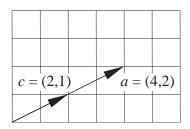
15/72

L. Olson (UIUC) CS 357 September 8, 2009

Vector Norms

Consider two element vectors, which lie in a plane





Use geometric lengths to represent the magnitudes of the vectors

$$\ell_a = \sqrt{4^2 + 2^2} = \sqrt{20}, \qquad \ell_b = \sqrt{2^2 + 4^2} = \sqrt{20}, \qquad \ell_c = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$\ell_b = \sqrt{2^2 + 4^2} = \sqrt{20},$$

$$\ell_c = \sqrt{2^2 + 1^2} = \sqrt{5}$$

We conclude that

$$\ell_a = \ell_b$$
 and $\ell_a > \ell_c$

or

$$||a|| = ||b||$$
 and $||a|| > ||c||$

The L_2 Norm

The notion of a geometric length for 2D or 3D vectors can be extended vectors with arbitrary numbers of elements.

The result is called the *Euclidian* or L_2 norm:

$$||x||_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

The L_2 norm can also be expressed in terms of the inner product

$$||x||_2 = \sqrt{x \cdot x} = \sqrt{x^T x}$$

L. Olson (UIUC) CS 357 September 8, 2009 17/72

p-Norms

For any positive integer *p*

$$||x||_p = (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{1/p}$$

The L_1 norm is sum of absolute values

$$||x||_1 = |x_1| + |x_2| + \ldots + |x_n| = \sum_{i=1}^n |x_i|$$

The L_{∞} norm or $max \ norm$ is

$$||x||_{\infty} = \max_{i} (|x_1|, |x_2|, \dots, |x_n|) = \max_{i} (|x_i|)$$

Although p can be any positive number, $p = 1, 2, \infty$ are most commonly used.

18 / 72

L. Olson (UIUC) CS 357

Application of Norms

Are two vectors (nearly) equal?

Floating point comparison of two scalars with absolute value:

$$\frac{\left|\alpha-\beta\right|}{\left|\alpha\right|}<\delta$$

where δ is a small tolerance.

Comparison of two vectors with norms:

$$\frac{\|y-z\|}{\|z\|}<\delta$$

Application of Norms

Notice that

$$\frac{\|y-z\|}{\|z\|}<\delta$$

is not equivalent to

$$\frac{\|y\|-\|z\|}{\|z\|}<\delta.$$

This comparison is important in convergence tests for sequences of vectors.

20 / 72

Application of Norms

Creating a Unit Vector

Given $u = [u_1, u_2, \dots, u_m]^T$, the unit vector in the direction of u is

$$\hat{u} = \frac{u}{\|u\|_2}$$

Proof:

$$\|\hat{u}\|_{2} = \left\|\frac{u}{\|u\|_{2}}\right\|_{2} = \frac{1}{\|u\|_{2}}\|u\|_{2} = 1$$

The following are not unit vectors

$$\frac{u}{\|u\|_1} \qquad \frac{u}{\|u\|_{\infty}}$$

September 8, 2009

21 / 72

L. Olson (UIUC) CS 357

Orthogonal Vectors

From geometric interpretation of the inner product

$$u \cdot v = \|u\|_2 \|v\|_2 \cos \theta$$

$$\cos \theta = \frac{u \cdot v}{\|u\|_2 \|v\|_2} = \frac{u^T v}{\|u\|_2 \|v\|_2}$$

Two vectors are orthogonal when $\theta = \pi/2$ or $u \cdot v = 0$. In other words

$$u^T v = 0$$

if and only if u and v are orthogonal.

Orthonormal Vectors

Orthonormal vectors are unit vectors that are orthogonal.

A **unit** vector has an L_2 norm of one.

The unit vector in the direction of u is

$$\hat{u} = \frac{u}{\|u\|_2}$$

Since

$$||u||_2 = \sqrt{u \cdot u}$$

it follows that $u \cdot u = 1$ if u is a unit vector.

Matrices

- Columns and Rows of a Matrix are Vectors
- Addition and Subtraction
- Multiplication by a scalar
- Transpose
- Linear Combinations of Vectors
- Matrix–Vector Product
- Matrix-Matrix Product

24/72

September 8, 2009

Notation

The matrix A with m rows and n columns looks like:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & & \cdots & a_{mn} \end{bmatrix}$$

 $a_{ij} =$ element in **row** i, and **column** j

In Matlab we can define a matrix with

$$_{1} >> A = [\dots ; \dots ; \dots]$$

where semicolons separate lists of row elements.

The $a_{2,3}$ element of the Matlab matrix A is A(2,3).

L. Olson (UIUC) CS 357 September 8, 2009 25 / 72

Matrices Consist of Row and Column Vectors

As a collection of column vectors

$$A = \left[a_{(1)} \middle| a_{(2)} \middle| \cdots \middle| a_{(n)} \right]$$

As a collection of row vectors

$$A = \begin{bmatrix} a'_{(1)} \\ & & \\$$

A prime is used to designate a row vector on this and the following pages.

Preview of the Row and Column View

Matrix and
vector operations

Row and column
operations

the column operations

perations

Element-by-element operations

Matrix Operations

- Addition and subtraction
- Multiplication by a Scalar
- Matrix Transpose
- Matrix–Vector Multiplication
- Vector–Matrix Multiplication
- Matrix–Matrix Multiplication

28 / 72

Matrix Operations

Addition and subtraction

$$C = A + B$$

or

$$c_{i,j} = a_{i,j} + b_{i,j}$$
 $i = 1, ..., m;$ $j = 1, ..., n$

Multiplication by a Scalar

$$B = \sigma A$$

or

$$b_{i,j} = \sigma a_{i,j}$$
 $i = 1, ..., m; j = 1, ..., n$

Note

Commas in subscripts are necessary when the subscripts are assigned numerical values. For example, $a_{2,3}$ is the row 2, column 3 element of matrix A, whereas a_{23} is the 23rd element of vector a. When variables appear in indices, such as a_{ij} or $a_{i,i}$, the comma is optional

29 / 72

Matrix Transpose

$$B = A^T$$

or

$$b_{i,j} = a_{j,i}$$
 $i = 1, ..., m; j = 1, ..., n$

In Matlab

Matrix-Vector Product

- The Column View
 - gives mathematical insight
- The Row View
 - easy to do by hand
- The Vector View
 - A square matrix rotates and stretches a vector

L. Olson (UIUC) CS 357 September 8, 2009 31 / 72

Consider a linear combination of a set of column vectors $\{a_{(1)}, a_{(2)}, \dots, a_{(n)}\}$. Each $a_{(i)}$ has m elements Let x_i be a set (a vector) of scalar multipliers

$$x_1a_{(1)} + x_2a_{(2)} + \ldots + x_na_{(n)} = b$$

or

$$\sum_{j=1}^{n} a_{(j)} x_j = b$$

Expand the (hidden) row index

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

Form a matrix with the $a_{(j)}$ as columns

$$\begin{bmatrix} a_{(1)} & a_{(2)} & \cdots & a_{(n)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}$$

Or, writing out the elements

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Thus, the matrix-vector product is

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Save space with matrix notation

$$Ax = b$$

34 / 72

L. Olson (UIUC) CS 357

The matrix–vector product b = Ax produces a vector b from a linear combination of the columns in A.

$$b = Ax \iff b_i = \sum_{j=1}^n a_{ij} x_j$$

where x and b are column vectors

35 / 72

Listing 1: Matrix-Vector Multiplication by Columns

```
\begin{array}{ll} \texttt{initialize:} & b = \texttt{zeros}(m,1) \\ \texttt{for} & j = 1, \dots, n \\ & \texttt{for} & i = 1, \dots, m \\ & b(i) = A(i,j)x(j) + b(i) \\ & \texttt{end} \\ & \texttt{end} \end{array}
```

36 / 72

Compatibility Requirement

Inner dimensions must agree

$$\begin{array}{cccc}
A & x & = & b \\
[m \times n] & [n \times 1] & = & [m \times 1]
\end{array}$$

Consider the following matrix-vector product written out as a linear combination of matrix columns

$$\begin{bmatrix} 5 & 0 & 0 & -1 \\ -3 & 4 & -7 & 1 \\ 1 & 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ -3 \\ -1 \end{bmatrix}$$
$$= 4 \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ -7 \\ 3 \end{bmatrix} - 1 \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix}$$

This is the column view.

Now, group the multiplication and addition operations by row:

$$4 \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ -7 \\ 3 \end{bmatrix} - 1 \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix}$$

$$= \begin{bmatrix} (5)(4) + (0)(2) + (0)(-3) + (-1)(-1) \\ (-3)(4) + (4)(2) + (-7)(-3) + (1)(-1) \\ (1)(4) + (2)(2) + (3)(-3) + (6)(-1) \end{bmatrix} = \begin{bmatrix} 21 \\ 16 \\ -7 \end{bmatrix}$$

Final result is identical to that obtained with the column view.

39/72

L. Olson (UIUC) CS 357 September 8, 2009

Product of a 3×4 matrix, A, with a 4×1 vector, x, looks like

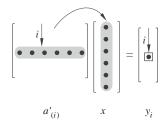
$$\begin{bmatrix} a'_{(1)} & & & \\ & a'_{(2)} & & \\ & & a'_{(3)} & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} a'_{(1)} \cdot x \\ a'_{(2)} \cdot x \\ a'_{(3)} \cdot x \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

where $a'_{(1)}$, $a'_{(2)}$, and $a'_{(3)}$, are the *row vectors* constituting the A matrix.

The matrix–vector product b=Ax produces elements in b by forming inner products of the rows of A with x.

40 / 72

L. Olson (UIUC) CS 357 September 8, 2009



Vector View of Matrix-Vector Product

If A is square, the product Ax has the effect of stretching and rotating x. Pure stretching of the column vector

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

Pure rotation of the column vector

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Vector-Matrix Product

Matrix-vector product

$$\begin{bmatrix} & & \\ &$$

Vector-Matrix product

$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ 1 \times m & & m \times n & & \\ & & & \\ 1 \times n & & & \\ & & & \\ 1 \times n & & & \\ \end{array}$$

Vector-Matrix Product

Compatibility Requirement: Inner dimensions must agree

$$\begin{array}{cccc} u & A & = & v \\ [1 \times m] & [m \times n] & = & [1 \times n] \end{array}$$

Matrix-Matrix Product

Computations can be organized in six different ways We'll focus on just two

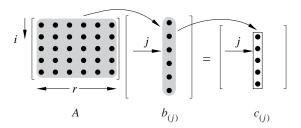
- Column View extension of column view of matrix-vector product
- Row View inner product algorithm, extension of column view of matrix–vector product

Column View of Matrix-Matrix Product

The product AB produces a matrix C. The columns of C are linear combinations of the columns of A.

$$AB = C \iff c_{(j)} = Ab_{(j)}$$

 $c_{(i)}$ and $b_{(i)}$ are column vectors.



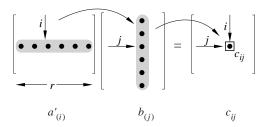
The column view of the matrix–matrix product AB = C is helpful because it shows the relationship between the columns of A and the columns of C.

Inner Product (Row) View of Matrix-Matrix Product

The product AB produces a matrix C. The c_{ij} element is the *inner product* of row i of A and column j of B.

$$AB = C \iff c_{ij} = a'_{(i)}b_{(j)}$$

 $a'_{(i)}$ is a row vector, $b_{(j)}$ is a column vector.



The inner product view of the matrix—matrix product is easier to use for hand calculations.

Matrix-Matrix Product Summary

The Matrix-vector product looks like:

$$\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet \\ \bullet \\ \bullet \end{bmatrix} = \begin{bmatrix} \bullet \\ \bullet \\ \bullet \end{bmatrix}$$

The vector-Matrix product looks like:

$$\begin{bmatrix} \bullet & \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} = \begin{bmatrix} \bullet & \bullet & \bullet \end{bmatrix}$$



Matrix-Matrix Product Summary

The Matrix-Matrix product looks like:

Matrix-Matrix Product Summary

Compatibility Requirement

$$\begin{array}{cccc}
A & B & = & C \\
[m \times r] & [r \times n] & = & [m \times n]
\end{array}$$

Inner dimensions must agree Also, in general

$$AB \neq BA$$

50 / 72

L. Olson (UIUC) CS 357

Mathematical Properties of Vectors and Matrices

- Linear Independence
- Vector Spaces
- Subspaces associated with matrices
- Matrix Rank

Two vectors lying along the same line are not independent

$$u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $v = -2u = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$

Any two independent vectors, for example,

$$v = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$$
 and $w = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

define a plane. Any other vector in this plane of \boldsymbol{v} and \boldsymbol{w} can be represented by

$$x = \alpha v + \beta w$$

x is **linearly dependent** on v and w because it can be formed by a linear combination of v and w.

A set of vectors is linearly independent if it is impossible to use a linear combination of vectors in the set to create another vector in the set. Linear independence is easy to see for vectors that are orthogonal, for example,

$$\begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ -3 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

are linearly independent.

Consider two linearly independent vectors, u and v.

If a third vector, w, *cannot* be expressed as a linear combination of u and v, then the set $\{u, v, w\}$ is linearly independent. In other words, if $\{u, v, w\}$ is linearly independent then

$$\alpha u + \beta v = \delta w$$

can be true *only if* $\alpha = \beta = \delta = 0$. More generally, if the only solution to

$$\alpha_1 v_{(1)} + \alpha_2 v_{(2)} + \dots + \alpha_n v_{(n)} = 0$$
 (1)

is $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$, then the set $\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\}$ is **linearly independent**. Conversely, if equation (1) is satisfied by at least one nonzero α_i , then the set of vectors is **linearly dependent**.

54 / 72

L. Olson (UIUC) CS 357 September 8, 2009

Let the set of vectors $\{v_{(1)},v_{(2)},\ldots,v_{(n)}\}$ be organized as the columns of a matrix. Then the condition of linear independence is

$$\begin{bmatrix} v_{(1)} \middle| v_{(2)} \middle| \cdots \middle| v_{(n)} \middle| \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 (2)

The columns of the $m \times n$ matrix, A, are linearly independent if and only if $x = (0, 0, \dots, 0)^T$ is the only n element column vector that satisfies Ax = 0.

Vector Spaces

- Spaces and Subspaces
- Basis of a Subspace
- Subspaces associated with Matrices

Spaces and Subspaces

Group vectors according to number of elements they have. Vectors from these different groups cannot be mixed.

 ${f R}^1 = {\sf Space}$ of all vectors with one element. These vectors define the points along a line.

 ${f R}^2=$ Space of all vectors with two elements. These vectors define the points in a plane.

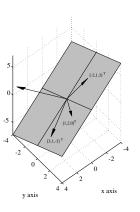
Rⁿ = Space of all vectors with n elements.These vectors define the points in an n-dimensional space (hyperplane).

Subspaces

The three vectors

$$u = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad v = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}, \quad w = \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix},$$

lie in the same plane. The vectors have three elements each, so they belong to ${\bf R}^3$, but they **span** a **subspace** of ${\bf R}^3$.



Basis and Dimension of a Subspace

- A basis for a subspace is a set of linearly independent vectors that span the subspace.
- Since a basis set must be linearly independent, it also must have the smallest number of vectors necessary to span the space. (Each vector makes a unique contribution to spanning some other direction in the space.)
- The number of vectors in a basis set is equal to the dimension of the subspace that these vectors span.
- Mutually orthogonal vectors (an orthogonal set) form convenient basis sets, but basis sets need not be orthogonal.

59 / 72

L. Olson (UIUC) CS 357 September 8, 2009

Subspaces Associated with Matrices

The matrix-vector product

$$y = Ax$$

creates y from a linear combination of the columns of A. The column vectors of A form a basis for the **column space** or **range** of A.

Matrix Rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- rank(A) is the dimension of the column space of A.
- Numerical computation of rank(A) is tricky due to roundoff.

Consider

$$u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad w = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Do these vectors span \mathbb{R}^3 ?

Matrix Rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- rank(A) is the dimension of the column space of A.
- Numerical computation of rank(A) is tricky due to roundoff.

Consider

$$u = \begin{bmatrix} 1 \\ 0 \\ 0.00001 \end{bmatrix} \qquad v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad w = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Do these vectors span \mathbb{R}^3 ?

Matrix Rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- rank(A) is the dimension of the column space of A.
- Numerical computation of rank(A) is tricky due to roundoff.

Consider

$$u = egin{bmatrix} 1 \ 0 \ arepsilon_{\varepsilon_m} \end{bmatrix} \qquad v = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \qquad w = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$$

Do these vectors span \mathbb{R}^3 ?

Matrix Rank (2)

We can use Matlab's built-in **rank** function for exploratory calculations on (relatively) small matrices

Matrix Rank (2)

Repeat numerical calculation of rank with smaller diagonal entry

Even though A(3,3) is not identically zero, it is small enough that the matrix is *numerically* rank-deficient

L. Olson (UIUC) CS 357 September 8, 2009 63 / 72

Special Matrices

- Diagonal Matrices
- Tridiagonal Matrices
- The Identity Matrix
- The Matrix Inverse
- Symmetric Matrices
- Positive Definite Matrices
- Orthogonal Matrices
- Permutation Matrices

Diagonal Matrices

Diagonal matrices have non-zero elements only on the main diagonal.

$$C = \operatorname{diag}(c_1, c_2, \dots, c_n) = \begin{bmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & c_n \end{bmatrix}$$

The **diag** function is used to either create a diagonal matrix from a vector, or and extract the diagonal entries of a matrix.

Diagonal Matrices

The **diag** function can also be used to create a matrix with elements only on a specified *super*-diagonal or *sub*-diagonal. Doing so requires using the two-parameter form of **diag**:

Identity Matrices

An identity matrix is a square matrix with ones on the main diagonal.

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

An identity matrix is special because

$$AI = A$$
 and $IA = A$

for any compatible matrix A. This is like multiplying by one in scalar arithmetic.

September 8, 2009

Identity Matrices

Identity matrices can be created with the built-in **eye** function.

Sometimes I_n is used to designate an identity matrix with n rows and n columns. For example,

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Identity Matrices

A non-square, *identity-like* matrix can be created with the two-parameter form of the eye function:

J and K are *not* identity matrices!

Functions to Create Special Matrices

Matrix	Matlab function
Diagonal	diag
Identity	eye
Inverse	inv

Symmetric Matrices

If $A = A^T$, then A is called a *symmetric* matrix.

$$\begin{bmatrix} 5 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Note

 $B = A^T A$ is symmetric for any (real) matrix A.

Tridiagonal Matrices

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

The diagonal elements need not be equal. The general form of a tridiagonal matrix is

$$A = \begin{bmatrix} a_1 & b_1 \\ c_2 & a_2 & b_2 \\ & c_3 & a_3 & b_3 \\ & & \ddots & \ddots & \ddots \\ & & & c_{n-1} & a_{n-1} & b_{n-1} \\ & & & & c_n & a_n \end{bmatrix}$$

