
Lecture 8
Conditioning, Banded Systems

David Semeraro

University of Illinois at Urbana-Champaign

September 19, 2013

David Semeraro (NCSA) CS 357 September 19, 2013 1 / 29



Goals for today...

How do we know if GE if will be accurate?
I norms, condition number, theory

Can we reduce cost for special systems
I tridiagonals, banded, etc
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Geometric Interpretation of Singularity

Consider a 2× 2 system describing two lines that intersect

y = −2x + 6

y =
1
2

x + 1

The matrix form of this equation is[
2 1

−1/2 1

] [
x1
x2

]
=

[
6
1

]
The equations for two parallel but not intersecting lines are[

2 1
2 1

] [
x1
x2

]
=

[
6
5

]
Here the coefficient matrix is singular (rank(A) = 1), and the system is
inconsistent
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Geometric Interpretation of Singularity

The equations for two parallel and coincident lines are[
2 1
2 1

] [
x1
x2

]
=

[
6
6

]
The equations for two nearly parallel lines are[

2 1
2 + δ 1

] [
x1
x2

]
=

[
6

6 + δ

]
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Geometric Interpretation of Singularity
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A is ill conditioned
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Effect of Perturbations to b

Consider the solution of a 2× 2 system where

b =

[
1

2/3

]
One expects that the exact solutions to

Ax =

[
1

2/3

]
and Ax =

[
1

0.6667

]
will be different. Should these solutions be a lot different or a little different?
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Norms
Vectors:

‖x‖p =
(
|x1|

p + |x2|
p + . . . + |xn|

p)1/p

‖x‖1 = |x1|+ |x2|+ . . . + |xn| =

n∑
i=1

|xi|

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Matrices:

‖A‖ = max
x,0

‖Ax‖
‖x‖

‖A‖p = max
x,0

‖Ax‖p

‖x‖p

‖A‖1 = max
16j6n

m∑
i=1

|aij|

‖A‖∞ = max
16i6m

n∑
j=1

|aij|
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Some Important Properties of Norms

‖αx‖ = |α|‖x‖
‖Ax‖ 6 ‖A‖‖x‖
‖x + y‖ 6 ‖x‖+ ‖y‖

Challenge: Make sure that you can prove these properties.
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Effect of Perturbations to b

Perturb b with δb such that
‖δb‖
‖b‖

� 1,

The perturbed system is
A(x + δxb) = b + δb

The perturbations satisfy
Aδxb = δb

Analysis shows (see next two slides for proof) that

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxb‖
‖x‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Effect of Perturbations to b (Proof)

Let x + δxb be the exact solution to the perturbed system

A(x + δxb) = b + δb (1)

Expand
Ax + Aδxb = b + δb

Subtract Ax from left side and b from right side since Ax = b

Aδxb = δb

Left multiply by A−1

δxb = A−1δb (2)
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Effect of Perturbations to b (Proof, p. 2)

Take norm of equation (2)
‖δxb‖ = ‖A−1 δb‖

Applying consistency requirement of matrix norms

‖δxb‖ 6 ‖A−1‖‖δb‖ (3)

Similarly, Ax = b gives ‖b‖ = ‖Ax‖, and

‖b‖ 6 ‖A‖‖x‖ (4)

Rearrangement of equation (4) yields

1
‖x‖

6
‖A‖
‖b‖

(5)

David Semeraro (NCSA) CS 357 September 19, 2013 11 / 29



Effect of Perturbations to b (Proof)

Multiply Equation (5) by Equation (3) to get

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

(6)

Summary:

If x + δxb is the exact solution to the perturbed system

A(x + δxb) = b + δb

then
‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖
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Effect of Perturbations to A

Perturb A with δA such that
‖δA‖
‖A‖

� 1,

The perturbed system is

(A + δA)(x + δxA) = b

Analysis shows that
‖δxA‖
‖x + δxA‖

6 ‖A‖‖A−1‖‖δA‖
‖A‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxA‖
‖x + δxA‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Effect of Perturbations to both A and b
Perturb both A with δA and b with δb such that

‖δA‖
‖A‖

� 1 and
‖δb‖
‖b‖

� 1

The perturbation satisfies

(A + δA)(x + δx) = b + δb

Analysis shows that

‖δx‖
‖x + δx‖

6
‖A‖‖A−1‖

1 − ‖A‖‖A−1‖‖δA‖
‖A‖

[
‖δA‖
‖A‖

+
‖δb‖
‖b‖

]

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δx‖
‖x + δx‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Condition number of A

The condition number
κ(A) ≡ ‖A‖‖A−1‖

indicates the sensitivity of the solution to perturbations in A and b. The
condition number can be measured with any p-norm.
The condition number is always in the range

1 6 κ(A) 6 ∞
κ(A) is a mathematical property of A
Any algorithm will produce a solution that is sensitive to
perturbations in A and b if κ(A) is large.
In exact math a matrix is either singular or non-singular.
κ(A) = ∞ for a singular matrix
κ(A) indicates how close A is to being numerically singular.
A matrix with large κ is said to be ill-conditioned
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Computational Stability

In Practice, applying Gaussian elimination with partial pivoting and back
substitution to Ax = b gives the exact solution, x̂, to the nearby problem

(A + E)x̂ = b where ‖E‖∞ 6 εm‖A‖∞
Gaussian elimination with partial pivoting and back substitution
“gives exactly the right answer to nearly the right question.”

— Trefethen and Bau
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Computational Stability

An algorithm that gives the exact answer to a problem that is near to the
original problem is said to be backward stable. Algorithms that are not
backward stable will tend to amplify roundoff errors present in the original
data. As a result, the solution produced by an algorithm that is not backward
stable will not necessarily be the solution to a problem that is close to the
original problem.
Gaussian elimination without partial pivoting is not backward stable for
arbitrary A.
If A is symmetric and positive definite, then Gaussian elimination without
pivoting is backward stable.
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The Residual

Let x̂ be the numerical solution to Ax = b. x̂ , x (x is the exact solution)
because of roundoff.
The residual measures how close x̂ is to satisfying the original equation

r = b − Ax̂

It is not hard to show that

‖x̂ − x‖
‖x‖

6 κ(A)
‖r‖
‖b‖

Small ‖r‖ does not guarantee a small ‖x̂ − x‖.
If κ(A) is large the x̂ returned by Gaussian elimination and back substitution
(or any other solution method) is not guaranteed to be anywhere near the true
solution to Ax = b.
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Rules of Thumb

Applying Gaussian elimination with partial pivoting and back substitution
to Ax = b yields a numerical solution x̂ such that the residual vector
r = b − Ax̂ is small even if the κ(A) is large.
If A and b are stored to machine precision εm, the numerical solution to
Ax = b by any (good) variant of Gaussian elimination is correct to d
decimal digits where

d = | log10(εm)|− log10 (κ(A))
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Rules of Thumb

d = | log10(εm)|− log10 (κ(A))

Example:
MATLAB computations have εm ≈ 2.2× 10−16. For a system with κ(A) ∼ 1010

the elements of the solution vector will have

d = | log10(2.2× 10−16)|− log10

(
1010)

≈ 16 − 10
= 6

correct digits
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Summary of Limits to Numerical Solution of Ax = b

1 κ(A) indicates how close A is to being numerically singular
2 If κ(A) is “large”, A is ill-conditioned and even the best numerical

algorithms will produce a solution, x̂ that cannot be guaranteed to be
close to the true solution, x

3 In practice, Gaussian elimination with partial pivoting and back
substitution produces a solution with a small residual

r = b − Ax̂

even if κ(A) is large.
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More Algorithms for Special Systems

tridiagonal systems
banded systems
LU decomposition
Cholesky factorization
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Tridiagonal

A tridiagonal matrix A

d1 c1
a1 d2 c2

a2 d3 c3
. . . . . . . . .

ai−1 di ci
. . . . . . . . .
. . . . . . . . .

an−1 dn


storage is saved by not saving zeros
only n + 2(n − 1) = 3n − 2 places are needed to store the matrix versus n2

for the whole system
can operations be saved? yes!
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Tridiagonal



d1 c1
a1 d2 c2

a2 d3 c3
. . . . . . . . .

ai−1 di ci
. . . . . . . . .
. . . . . . . . .

an−1 dn


Start forward elimination (without any special pivoting)

1 subtract a1/d1 times row 1 from row 2
2 this eliminates a1, changes d2 and does not touch c2

3 continuing:

di = di −

(
ai−1

di−1
ci−1

)
for i = 2 . . . n
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Tridiagonal



d̃1 c1

d̃2 c2

d̃3 c3
. . . . . .

d̃i ci
. . . . . .
. . . . . .

d̃n


This leaves an upper triangular (2-band). With back substitution:

1 xn = b̃n/d̃n

2 xn−1 = (1/d̃n−1)(b̃n−1 − cn−1xn)

3 xi = (1/d̃i)(b̃i − cixi+1)
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Tridiagonal Algorithm

1 input: n, a, d, c, b
2 for i = 2 to n
3 xmult = ai−1/di−1

4 di = di − xmult · ci−1

5 bi = bi − xmult · bi−1

6 end

7 xn = bn/dn

8 for i = n − 1 down to 1
9 xi = (bi − cixi+1)/di

10 end

Challenge: Will this algorithm make good use of the processor cores in a
multicore processor? Why or why not?
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m-band

m = 5 m = 11 m = 11

the m correspond to the total width of the non-zeros
after a few passes of GE fill-in with occur within the band
so an empty band costs (about) the same an a non-empty band
one fix: reordering (e.g. Cuthill-McKee)
generally GE will cost O(m2n) for m-band systems

David Semeraro (NCSA) CS 357 September 19, 2013 27 / 29


