David Semeraro

University of lllinois at Urbana-Champaign

September 24, 2013

@ tridiagonal systems
@ banded systems

@ LU decomposition

@ Cholesky factorization

o = = = = 9Dac

A tridiagonal matrix A

_dl C1 _
a dy o
a ds C3
a1 di ¢

Ap—1 dn_
@ storage is saved by not saving zeros

@ only n+2(n—1) = 3n—2 places are needed to store the matrix versus n?
for the whole system

@ can operations be saved? yes!

An—1 dn
Start forward elimination (without any special pivoting)
@ subtract a; /d; times row 1 from row 2

@ this eliminates a1, changes d, and does not touch ¢,
@ continuing:

~ a;_ ~ Ai 1~
di =di — (j—lcz’q) bi=b; — (ibi—l)

L dy]
This leaves an upper triangular (2-band). With back substitution:
Q x, =by,/d,
Q x1 = (1/dy—1)(Bu1 — cu1xy)
Q x; = (1/d;)(b; — cixis1)

=y = = = 9Dac
~ DavidSemeraro (NCSAY csas7 September24,2013 5/33

© ® N o o B~ 0 N =

input: n,a,d,c,b
for i=2 to n
xmult = (l,;l/dl;l
d,’ = d,’ — xmult - Ci—1
b,‘ = b,‘ — xmult - bifl
end
Xn = bn/dn
for i=n—1 down to 1
% = (bi — cixzy1)/d;
end

Da0

@ the m correspond to the total width of the non-zeros

@ after a few passes of GE fill-in with occur within the band

@ so an empty band costs (about) the same as a non-empty band
@ one fix: reordering (e.g. Cuthill-McKee)

@ generally GE will cost O(m?n) for m-band systems

@ Given a graph, construct associated matrix, called the graph Laplacian
@ Row i of matrix corresponds to node i of graph

» Diagonal entry is valence (total # of edges) for node i
» Place a negative one in column j if node j is connected to i

2 -1 0 0 -1
-1 3 -1 0 -1

0o -1 2 -1 0

o 0 -1 3 -1 -
-1 -1 0 -1 3

0O 0o 0 -1 ©0

—_ oo oo

u]
o)
I
ul
it

Graph is Laplacian useful for

@ Calculating spanning trees

@ Partitioning a graph evenly
@ and many more....

To use the graph Laplacian, you need to solve Ax =b
for many different vectors, b.

@ Solve Ax = b for many different b vectors

@ For k different b vectors, Gaussian Elimination costs O(kn3)
@ We can do better: LU factorization

@ Ais symmetric, if A = AT
@ If A= LU and A is symmetric, then could L = UT?

@ If so, this could save 50% of the computation of LU by only calculating L
@ Save 50% of the FLOPS!

@ This is achievable: LDLT and Cholesky (LTL) factorization

u]
o)
I
ul
it
<
¢

Factorizations are the common approach to solving Ax = b:
simply organized Gaussian elimination.

Goals for today:
@ LU factorization
@ Cholesky factorization

@ Python-Numpy functions

Find L and U such that

A=LU
and L is lower triangular, and U is upper triangular.

1 0 0
22,1 1 0 0
L= |61 &2 1 0
en,l E11,2 enfl,n 1
i1 U2 U113 Ul
0 upp uzz -+ Uy
u=|0 o0 :

. . Up—1n
0 0

un n
’ I
Since L and U are triangular, it is easy to apply their inverses. - . -~ !
~ DavidSemeraro (NCSAY csas7 September24,2013 13/33

@ Since L and U are triangular, it is easy, O(n?), to apply their inverses
@ Decompose once, solve k right-hand sides quickly:
> O(kn®) with GE

> O(n® 4+ kn?) with LU

@ Given A = LU you can compute A1, det(A), rank(A), ker(A), etc...

=} = = AP N G4
~ DavidSemeraro (NCSAY csas7 September24,2013 14/33

Since L and U are triangular, it is easy to apply their inverses.
Consider the solution to Ax = b.

A=LU= (LU)x =D
Regroup since matrix multiplication is associative

L(Ux)=b
Let Ux =y, then

Ly=5b
Since L is triangular it is easy (without Gaussian elimination) to compute

y= L'

This expression should be interpreted as “Solve Ly = b with forward
substitution.”

Now, since y is known, solve for x

x=Uly

which is interpreted as “Solve Ux = y with backward substitution.”

=y = Ha e
~ DavidSemeraro (NCSAY csas7 September24,2013 16/33

Factor A into L and U
Solve Ly=b for y
Solve Ux=y for x

u]
o)
I
ul
it
N
2 =

Listing 1: LU Solve

use forward substitution

use backward substitution

@ If we have Ax = b and perform GE we end up with

~
~

X X x x x x' ox x
A ¥ ¥ xox 0 x" x X
“lx x x x| 7|0 0 x ¥
X X x x 0 0 0 «x

@ Remember from Lecture 6, that naive Gaussian Elimination can be done
by matrix multiplication
MAx = Mb
Ux = Mb
@ MA is upper triangular and called U
@ M is the elimination matrix

As an example take one column step of GE, A becomes

6 —2 2 4 6 —2 2 4
12 -8 6 10 0o 4 2 2
3 -139 3| 7lo 128 1
-6 4 1 -—18 0 2 3 -—-14
using the elimination matrix
1 00 0
-2 1 0 0
My = -1 010
1 0 0 1
So we have performed
M1Ax=M1b

From Lecture 6
@ Inverting M, is easy: just flip the sign of the lower triangular entries

1 000 1 000
-2 100 4 |2 100
M, = = M;!=
-1 010 1 1010
1 001 -1 00 1

@ M; ! is just the multipliers used in Gaussian Elimination!
° MflM].*1 is still lower triangular, for i < j,
and is the union of the columns

) Ml_le_1 .. .Mj_1 is lower triangular, with the lower triangle the multipliers
from Gaussian Elimination

@ Zeroing each column yields another elimination matrix operation:
M3M2M1Ax = M3M2M1b

e M = MsM,M;. Thus
o L =M,;'M,'M;"is lower triangular

MA=U

M;MyMiA = U
A=M"M; MU
A=LU

o = = = = 9Dac

© ® N o o B~ 0 N =

i1

Listing 2: LU

given A

for k=1...n—1
for i=k+1...n
xmult = ay./a
Ay = xmult
for j=k+1...n
ﬂi]' = a,‘j — (xmult)akj
end
end
end

@ U is stored in the upper triangular portion of A
@ L (without the diagonal) is stored in the lower triangular

u]
o)
I
ul
it
<
¢

Listing 3: Doolittle

1 given A

2 output L, U

3

4 for k=1...n

5 b =1

6 for j=k...n

7 g = ag —) bt
8 end

9 for j=k+1...n

10 b = (ﬂjk = Zi:ll ejiuik) /U
3 end

12 end

@ Mathematically the same as previous LU
@ Difference is we now explicitly form L and U

@ Pivoting (that is row exchanges) can be expressed in terms of matrix
multiplication

@ Do pivoting during elimination, but track row exchanges in order to
express pivoting with matrix P

@ Let P be all zeros

» Place a1 in column j of row 1 to exchange row 1 and row j
~ If no row exchanged needed, place a 1 in column 1 of row 1
~ Repeat for all rows of P

@ P is a permutation matrix

@ Now using pivoting,
LU=PA

u]
o)
I
ul
it
<
¢

o A @ v =

Like GE, LU needs pivoting. With pivoting the LU factorization always exists,
even if A is singular. With pivoting, we get

LU =PA

import pprint
import scipy
import scipy.linalg # SciPy Linear Algebra Library

A = scipy.array([[5, 4, 6, 9], [4, 4, 1, 4], [1, 7, 1, 10],
[9, 8, 9, 31 I

P, L, U = scipy.linalg.lu(A)
print "A:"
pprint.pprint (A)

print "P:"
pprint.pprint (P)

print "L:"
pprint.pprint (L)

print "U:"
pprint.pprint (U)

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

u]
o)
I
ul
it
N
o —

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

@ Suppose

A=LU, and A=AT
@ Then
LU=A=AT =) =Uu"L”
@ Thus
and

U=Lu'c’
urh"=L'u"=o

@ We can conclude that

and

Uu=DLT

A=LU=LDLT

Or «Fr «EZr» «Er» T HAC
~ DavidSemeraro (NCSAY csas7 September24,2013 27/33

L N N

~

10

11

12

13

Listing 4: Symm Doolittle

given A
output L, D

for k=1...n
b =1

k—1 D)
de = aw — 3 A,

for j=k+1...n
b =0
b = (ajk R ejvdvekv) /dx
end
end

@ Special form of the Doolittle factorization

u]
o)
I
ul
it
<
¢

@ A must be symmetric and positive definite (SPD)
@ A is Positive Definite (PD) if for all x # 0 the following holds

xTAx >0
@ Positive definite gives us an all positive D in A = LDLT

» Let x = L~ '¢;, where ¢; is the i-th column of |
@ L becomes LD'/2

e A=LL"ie.L=U"

> Half as many flops as LU!
» Only calculate L not U

N

Listing 5: Cholesky

given A
output L
for k=1...n

1/2
k-1
by = (“kk— i=1 e%i)

for j=k+1...n
b = (ﬂjk —5 = ejieki) /U
end
end

o P S = z 9ac

In general, SPD gives us
@ non singular

» If xTAx > 0, for all nonzero x

» Then Ax # 0 for all nonzero x

» Hence, the columns of A are linearly independent
@ No pivoting

» From algorithm, can derive that
il < /A
» Elements of L do not grow with respect to A
~ For short proof see book
@ Cholesky faster than LU
~ No pivoting
> Only calculate L, not U

A matrix is Positive Definite (PD) if for all x # 0 the following holds

xTAx >0

@ For SPD matrices, use the Cholesky factorization, A = LLT
@ Cholesky Factorization
» Requires no pivoting
» Requires one half as many flops as LU factorization, that is only calculate L
not L and U.

» Cholesky will be more than twice as fast as LU because no pivoting means
no data movement

@ Use SCIPY’s built-in scipy.linalg.cholesky() function for routine work

u]
o)
I
ul
it

Multiple right hand sides

@ Solve Ax = b for k different b vectors
@ Using LU factorization, the cost is O (%) + O(kn?)

@ Using Gaussian Elimination, the cost is O(kn?)
If A is symmetric

@ Save 50% of the flops with LDLT factorization

@ Save 50% of the flops and many memory operations with
Cholesky (LTL) factorization

o> <& = Do
~ DavidSemeraro (NCSAY csas7 September24,2013 33/33

