
Lecture 9
Banded, LU, Cholesky

David Semeraro

University of Illinois at Urbana-Champaign

September 24, 2013

David Semeraro (NCSA) CS 357 September 24, 2013 1 / 33

More Algorithms for Special Systems

tridiagonal systems
banded systems
LU decomposition
Cholesky factorization

David Semeraro (NCSA) CS 357 September 24, 2013 2 / 33

Tridiagonal

A tridiagonal matrix A

d1 c1
a1 d2 c2

a2 d3 c3
.

ai−1 di ci
.
.

an−1 dn


storage is saved by not saving zeros
only n + 2(n − 1) = 3n − 2 places are needed to store the matrix versus n2

for the whole system
can operations be saved? yes!

David Semeraro (NCSA) CS 357 September 24, 2013 3 / 33

Tridiagonal



d1 c1
a1 d2 c2

a2 d3 c3
.

ai−1 di ci
.
.

an−1 dn


Start forward elimination (without any special pivoting)

1 subtract a1/d1 times row 1 from row 2
2 this eliminates a1, changes d2 and does not touch c2
3 continuing:

d̃i = di −

(
ai−1

d̃i−1
ci−1

)
b̃i = bi −

(
ai−1

d̃i−1
b̃i−1

)
for i = 2 . . . n
David Semeraro (NCSA) CS 357 September 24, 2013 4 / 33

Tridiagonal



d̃1 c1

d̃2 c2

d̃3 c3
.

d̃i ci
.
.

d̃n


This leaves an upper triangular (2-band). With back substitution:

1 xn = b̃n/d̃n

2 xn−1 = (1/d̃n−1)(b̃n−1 − cn−1xn)

3 xi = (1/d̃i)(b̃i − cixi+1)

David Semeraro (NCSA) CS 357 September 24, 2013 5 / 33

Tridiagonal Algorithm

1 input: n, a, d, c, b
2 for i = 2 to n
3 xmult = ai−1/di−1

4 di = di − xmult · ci−1

5 bi = bi − xmult · bi−1

6 end

7 xn = bn/dn

8 for i = n − 1 down to 1
9 xi = (bi − cixi+1)/di

10 end

David Semeraro (NCSA) CS 357 September 24, 2013 6 / 33

m-band

m = 5 m = 11 m = 11

the m correspond to the total width of the non-zeros
after a few passes of GE fill-in with occur within the band
so an empty band costs (about) the same as a non-empty band
one fix: reordering (e.g. Cuthill-McKee)
generally GE will cost O(m2n) for m-band systems

David Semeraro (NCSA) CS 357 September 24, 2013 7 / 33

Motivation: Graph Theory

Given a graph, construct associated matrix, called the graph Laplacian
Row i of matrix corresponds to node i of graph

I Diagonal entry is valence (total # of edges) for node i
I Place a negative one in column j if node j is connected to i

⇒


2 −1 0 0 −1 0

−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 −1 0 −1 3 0
0 0 0 −1 0 1



David Semeraro (NCSA) CS 357 September 24, 2013 8 / 33

Motivation: Graph Theory

Graph is Laplacian useful for
Calculating spanning trees
Partitioning a graph evenly
and many more....

To use the graph Laplacian, you need to solve Ax = b
for many different vectors, b.

David Semeraro (NCSA) CS 357 September 24, 2013 9 / 33

Motivation: Graph Theory (Multiple Right Hand Sides)

Solve Ax = b for many different b vectors
For k different b vectors, Gaussian Elimination costs O(kn3)

We can do better: LU factorization

David Semeraro (NCSA) CS 357 September 24, 2013 10 / 33

Motivation: Symmetric Matrix

A is symmetric, if A = AT

If A = LU and A is symmetric, then could L = UT?
If so, this could save 50% of the computation of LU by only calculating L
Save 50% of the FLOPS!
This is achievable: LDLT and Cholesky (LTL) factorization

David Semeraro (NCSA) CS 357 September 24, 2013 11 / 33

Factorization Methods

Factorizations are the common approach to solving Ax = b:
simply organized Gaussian elimination.

Goals for today:
LU factorization
Cholesky factorization
Python-Numpy functions

David Semeraro (NCSA) CS 357 September 24, 2013 12 / 33

LU Factorization
Find L and U such that

A = LU

and L is lower triangular, and U is upper triangular.

L =


1 0 · · · 0
`2,1 1 0 0
`3,1 `3,2 1 0
...

...
. . .

...
`n,1 `n,2 · · · `n−1,n 1



U =



u1,1 u1,2 u1,3 · · · u1,n
0 u2,2 u2,3 · · · u2,n

0 0
.

...
...

... un−1,n
0 0 un,n


Since L and U are triangular, it is easy to apply their inverses.

David Semeraro (NCSA) CS 357 September 24, 2013 13 / 33

Why?

Since L and U are triangular, it is easy, O(n2), to apply their inverses
Decompose once, solve k right-hand sides quickly:

I O(kn3) with GE
I O(n3 + kn2) with LU

Given A = LU you can compute A−1, det(A), rank(A), ker(A), etc...

David Semeraro (NCSA) CS 357 September 24, 2013 14 / 33

LU Factorization

Since L and U are triangular, it is easy to apply their inverses.
Consider the solution to Ax = b.

A = LU =⇒ (LU)x = b

Regroup since matrix multiplication is associative

L(Ux) = b

Let Ux = y, then
Ly = b

Since L is triangular it is easy (without Gaussian elimination) to compute

y = L−1b

This expression should be interpreted as “Solve Ly = b with forward
substitution.”

David Semeraro (NCSA) CS 357 September 24, 2013 15 / 33

LU Factorization

Now, since y is known, solve for x

x = U−1y

which is interpreted as “Solve Ux = y with backward substitution.”

David Semeraro (NCSA) CS 357 September 24, 2013 16 / 33

LU Factorization

Listing 1: LU Solve
1 Factor A into L and U
2 Solve Ly = b for y use forward substitution

3 Solve Ux = y for x use backward substitution

David Semeraro (NCSA) CS 357 September 24, 2013 17 / 33

LU Factorization

If we have Ax = b and perform GE we end up with

A =


x x x x
x x x x
x x x x
x x x x

⇒


x ′ x ′ x ′ x ′

0 x ′ x ′ x ′

0 0 x ′ x ′

0 0 0 x ′


Remember from Lecture 6, that naive Gaussian Elimination can be done
by matrix multiplication

MAx = Mb

Ux = Mb

MA is upper triangular and called U
M is the elimination matrix

David Semeraro (NCSA) CS 357 September 24, 2013 18 / 33

LU Factorization

As an example take one column step of GE, A becomes
6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

→


6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14


using the elimination matrix

M1 =


1 0 0 0
−2 1 0 0
− 1

2 0 1 0
1 0 0 1


So we have performed

M1Ax = M1b

David Semeraro (NCSA) CS 357 September 24, 2013 19 / 33

LU Factorization

From Lecture 6
Inverting Mi is easy: just flip the sign of the lower triangular entries

M1 =


1 0 0 0
−2 1 0 0
− 1

2 0 1 0
1 0 0 1

 ⇒ M−1
1 =


1 0 0 0
2 1 0 0
1
2 0 1 0
−1 0 0 1


M−1

i is just the multipliers used in Gaussian Elimination!

M−1
i M−1

j is still lower triangular, for i < j,
and is the union of the columns
M−1

1 M−1
2 . . . M−1

j is lower triangular, with the lower triangle the multipliers
from Gaussian Elimination

David Semeraro (NCSA) CS 357 September 24, 2013 20 / 33

LU Factorization

Zeroing each column yields another elimination matrix operation:

M3M2M1Ax = M3M2M1b

M = M3M2M1. Thus
L = M−1

1 M−1
2 M−1

3 is lower triangular

MA = U
M3M2M1A = U

A = M−1
1 M−1

2 M−1
3 U

A = LU

David Semeraro (NCSA) CS 357 September 24, 2013 21 / 33

LU (forward elimination) Algorithm

Listing 2: LU
1 given A
2

3 for k = 1 . . . n − 1
4 for i = k + 1 . . . n
5 xmult = aik/akk

6 aik = xmult
7 for j = k + 1 . . . n
8 aij = aij − (xmult)akj

9 end

10 end

11 end

U is stored in the upper triangular portion of A
L (without the diagonal) is stored in the lower triangular

David Semeraro (NCSA) CS 357 September 24, 2013 22 / 33

Doolittle Factorization (LU)

Listing 3: Doolittle
1 given A
2 output L, U
3

4 for k = 1 . . . n
5 `kk = 1
6 for j = k . . . n
7 ukj = akj −

∑k−1
i=1 `kiuij

8 end

9 for j = k + 1 . . . n

10 `jk =
(

ajk −
∑k−1

i=1 `jiuik

)
/ukk

11 end

12 end

Mathematically the same as previous LU
Difference is we now explicitly form L and U

David Semeraro (NCSA) CS 357 September 24, 2013 23 / 33

What About Pivoting?

Pivoting (that is row exchanges) can be expressed in terms of matrix
multiplication
Do pivoting during elimination, but track row exchanges in order to
express pivoting with matrix P
Let P be all zeros

I Place a 1 in column j of row 1 to exchange row 1 and row j
I If no row exchanged needed, place a 1 in column 1 of row 1
I Repeat for all rows of P

P is a permutation matrix
Now using pivoting,

LU = PA

David Semeraro (NCSA) CS 357 September 24, 2013 24 / 33

NUMPY LU
Like GE, LU needs pivoting. With pivoting the LU factorization always exists,
even if A is singular. With pivoting, we get

LU = PA

1 import pprint

2 import scipy

3 import scipy.linalg # SciPy Linear Algebra Library

4

5 A = scipy.array([[5, 4, 6, 9], [4, 4, 1, 4], [1, 7, 1, 10],

[9, 8, 9, 3]])

6 P, L, U = scipy.linalg.lu(A)

7

8 print "A:"

9 pprint.pprint(A)

10

11 print "P:"

12 pprint.pprint(P)

13

14 print "L:"

15 pprint.pprint(L)

16

17 print "U:"

18 pprint.pprint(U)

David Semeraro (NCSA) CS 357 September 24, 2013 25 / 33

LU Tutorial Module

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

David Semeraro (NCSA) CS 357 September 24, 2013 26 / 33

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

Use SYMMETRY ! YRTEMMYS esU

Suppose
A = LU, and A = AT

Then
LU = A = AT = (LU)T = UTLT

Thus
U = L−1UTLT

and
U(LT)−1 = L−1UT = D

We can conclude that
U = DLT

and
A = LU = LDLT

David Semeraro (NCSA) CS 357 September 24, 2013 27 / 33

Symmetric Doolittle Factorization (LDLT)

Listing 4: Symm Doolittle
1 given A
2 output L, D
3

4 for k = 1 . . . n
5 `kk = 1
6

7 dk = akk −
∑k−1
ν=1 dν`2

kν
8

9 for j = k + 1 . . . n
10 `kj = 0

11 `jk =
(

ajk −
∑k−1
ν=1 `jνdν`kν

)
/dk

12 end

13 end

Special form of the Doolittle factorization

David Semeraro (NCSA) CS 357 September 24, 2013 28 / 33

LLT: Cholesky Factorization

A must be symmetric and positive definite (SPD)
A is Positive Definite (PD) if for all x , 0 the following holds

xTAx > 0

Positive definite gives us an all positive D in A = LDLT

I Let x = L−1ei, where ei is the i-th column of I

L becomes LD1/2

A = LLT, i.e. L = UT

I Half as many flops as LU!
I Only calculate L not U

David Semeraro (NCSA) CS 357 September 24, 2013 29 / 33

Cholesky Factorization

Listing 5: Cholesky
1 given A
2 output L
3

4 for k = 1 . . . n

5 `kk =
(

akk −
∑k−1

i=1 `2
ki

)1/2

6

7 for j = k + 1 . . . n

8 `jk =
(

ajk −
∑k−1

i=1 `ji`ki

)
/`kk

9 end

10 end

David Semeraro (NCSA) CS 357 September 24, 2013 30 / 33

Why SPD?

In general, SPD gives us
non singular

I If xTAx > 0, for all nonzero x
I Then Ax , 0 for all nonzero x
I Hence, the columns of A are linearly independent

No pivoting
I From algorithm, can derive that
|lkj| 6

√
akk

I Elements of L do not grow with respect to A
I For short proof see book

Cholesky faster than LU
I No pivoting
I Only calculate L, not U

David Semeraro (NCSA) CS 357 September 24, 2013 31 / 33

Why SPD?

A matrix is Positive Definite (PD) if for all x , 0 the following holds

xTAx > 0

For SPD matrices, use the Cholesky factorization, A = LLT

Cholesky Factorization
I Requires no pivoting
I Requires one half as many flops as LU factorization, that is only calculate L

not L and U.
I Cholesky will be more than twice as fast as LU because no pivoting means

no data movement

Use SCIPY’s built-in scipy.linalg.cholesky() function for routine work

David Semeraro (NCSA) CS 357 September 24, 2013 32 / 33

Motivation Revisited

Multiple right hand sides
Solve Ax = b for k different b vectors
Using LU factorization, the cost is O(n3) + O(kn2)

Using Gaussian Elimination, the cost is O(kn3)

If A is symmetric
Save 50% of the flops with LDLT factorization
Save 50% of the flops and many memory operations with
Cholesky (LTL) factorization

David Semeraro (NCSA) CS 357 September 24, 2013 33 / 33

