Lecture 11 Rootfinding

David Semeraro

University of Illinois at Urbana-Champaign

October 1, 2013

< 口 > < 同

- Not all problems are as easy to solve as linear systems of equations
- Even the 5th-order polynomial has no closed form solution
- Many problems fall into this category:
 - Where should wireless access points be placed? How many?
 - Where do two curved surfaces intersect?
 - What is the subsurface geology in the Los Angeles basin?
- How do we solve these problems? Iterate, getting closer (we hope!) each time.

We need to study some iterations.

- iteratively finding a root to an equation
- iteratively finding the solution to an algebraic system
- iteratively finding solutions to Ordinary Differential Equations (ODEs)

• ...

Given a function f(x), find x so that f(x) = 0

Rootfinding

Goals:

- Find roots to equations
- Compare usability of different methods
- Compare convergence properties of different methods
- bracketing methods
- Bisection Method
- Newton's Method
- Secant Method
- (opt) fixed point iterations
- (opt) special Case: Roots of Polynomials

Roots of f(x)

• Any single valued function can be written as f(x) = 0

Example

- Find x so that $\cos(x) = x$
- That is, find where $f(x) = \cos(x) x = 0$

Analyze your Application

Is the function complicated to evaluate?

- Iots of expresions?
- singularities?
- simplify? polynomial?
- How accuracte does our root need to be?
- How fast/robust should our method be?

From this, you can pick the right method...

Basic Root Finding Strategy

Plot the function

- Get an initial guess
- Identify problematic parts

Start with the initial guess and iterate

- A root x is *bracketed* on [a, b] if f(a) and f(b) have opposite sign.
- Changing signs does not guarantee bracketed, however: singularity

Bracketing helps get an initial guess

Listing 1: Bracket Algorithm

```
1 given: f(x), x_{min}, x_{max}, n
dx = (x_{max} - x_{min})/n
4 x_{left} = x_{min}
_{5}i = 0
6
7 while i < n
     i = i + 1
8
   x_{right} = x_{left} + dx
9
     if f(x) changes sign in [x_{left}, x_{right}]
10
         save [x_{left}, x_{right}] as an interval with a root
11
      end
12
13
     x_{left} = x_{right}
```

$f(a) \times f(b) < 0$

Should we use?

```
fa = myfunc(a);
fb = myfunc(b);
if(fa*fb<0)
(save)
```

end

Nope. Underflow...

sign()

Use Python's sign

```
fa = myfunc(a);
fb = myfunc(b);
import numpy as np
if(np.sign(fa) != np.sign(fb))
  (save)
end
```

< D > < D

Bracketing is fine. But we need to find the actual root:

- Bisection
- Newton's Method
- Secant Method
- Fixed Point Iteration

Process:

- use bracket.py to get a visual and brackets
- earch brackets with these methods

Given a bracketed root, halve the interval while continuing to bracket the root

For the bracket interval [a, b] the midpoint is

$$x_m = \frac{1}{2}(a+b)$$

idea:

- split bracket in half
- select the bracket that has the root
- goto step 1

Listing 2: Bisection

```
initialize: a = \dots, b = \dots
1
     for k = 1, 2, ...
2
       x_m = a + (b - a)/2
3
       if sign (f(x_m)) = sign (f(x_a))
4
          a = x_m
5
        else
6
          b = x_m
7
       end
8
       if converged, stop
9
     end
10
```

Bisection Example

Solve with bisection:

$$x - x^{1/3} - 2 = 0$$

k	а	b	x_{mid}	$f(x_{mid})$
0	3	4		
1	3	4	3.5	-0.01829449
2	3.5	4	3.75	0.19638375
3	3.5	3.75	3.625	0.08884159
4	3.5	3.625	3.5625	0.03522131
5	3.5	3.5625	3.53125	0.00845016
6	3.5	3.53125	3.515625	-0.00492550
7	3.51625	3.53125	3.5234375	0.00176150
8	3.51625	3.5234375	3.51953125	-0.00158221
9	3.51953125	3.5234375	3.52148438	0.00008959
10	3.51953125	3.52148438	3.52050781	-0.00074632
			< □	▶ ▲ @ ▶ ▲ 문 ▶ ▲ 문 I

Ξ 17/38

Analysis of Bisection

Let δ_n be the size of the bracketing interval at the n^{th} stage of bisection. Then

$$\delta_{0} = b - a = \text{initial bracketing interval}$$

$$\delta_{1} = \frac{1}{2}\delta_{0}$$

$$\delta_{2} = \frac{1}{2}\delta_{1} = \frac{1}{4}\delta_{0}$$

$$\vdots$$

$$\delta_{n} = \left(\frac{1}{2}\right)^{n}\delta_{0}$$

$$\implies \qquad \frac{\delta_{n}}{\delta_{0}} = \left(\frac{1}{2}\right)^{n} = 2^{-n}$$

or
$$n = \log_2\left(\frac{\delta_n}{\delta_0}\right)$$

$$\frac{\delta_n}{\delta_0} = \left(\frac{1}{2}\right)^n = 2^{-n}$$
 or $n = \log_2\left(\frac{\delta_n}{\delta_0}\right)$

п	$rac{\delta_n}{\delta_0}$	function evaluations	
5	$3.1 imes 10^{-2}$	7	
10	$9.8 imes10^{-4}$	12	
20	$9.5 imes10^{-7}$	22	
30	9.3×10^{-10}	32	
40	9.1×10^{-13}	42	
50	$8.9 imes10^{-16}$	52	

< □ > < □ > < □ > < □ > < □</p>

I

900

An automatic root-finding procedure needs to monitor progress toward the root and stop when current guess is close enough to the desired root.

- Convergence checking will avoid searching to unnecessary accuracy.
- Check how closeness of successive approximations

$$|x_k - x_{k-1}| < \delta_x$$

• Check how close f(x) is to zero at the current guess.

$$|f(x_k)| < \delta_f$$

• Which one you use depends on the problem being solved

Convergence Criteria on x

 x_k = current guess at the root x_{k-1} = previous guess at the root

Absolute tolerance: $|x_k - x_{k-1}| < \delta_x$ Relative tolerance: $\left|\frac{x_k - x_{k-1}}{b-a}\right| < \hat{\delta}_x$

Convergence Criteria on f(x)

Absolute tolerance: $|f(x_k)| < \delta_f$

Relative tolerance:

$$|f(x_k)| < \hat{\delta}_f \max\{|f(a_0)|, |f(b_0)|\}$$

where a_0 and b_0 are the original brackets

Convergence Criteria Compared

If f'(x) is small near the root, it is easy to satisfy tolerance on f(x) for a large range of Δx . The tolerance on Δx is more conservative

If f'(x) is large near the root, it is possible to satisfy the tolerance on Δx when |f(x)| is still large. The tolerance on f(x) is more conservative

• How are the criteria on x and f(x) related? Consider the ratio of the two criteria

$$\frac{f(x_b) - f(x_a)}{x_b - x_a}$$

- The limit of this as x_a and x_b converge to the exact answer x^* is just $f'(x^*)$.
- We can thus expect (this is not yet a proof) that

$$|f(x_b) - f(x_a)| \approx |f'(x^*)||x_b - x_a|$$

as x_a and x_b approach the solution x^* .

- Let $e_n = x^* x_n$ be the error.
- In general, a sequence is said to converge with rate r if

$$\lim_{k \to \infty} \frac{|e_{n+1}|}{|e_n|^r} = C$$

Special Cases:

- If r = 1 and C < 1, then the rate is *linear*
- If r = 2 and C > 0, then the rate is *quadratic*
- If r = 3 and C > 0, then the rate is *cubic*

Convergence Rate

- $10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} ...$
- $2 10^{-2}, 10^{-4}, 10^{-6}, 10^{-8}...$
- **3** 10⁻², 10⁻⁴, 10⁻⁸, 10⁻¹⁶...
- **1**10⁻², 10⁻⁶, 10⁻¹⁸, ...

イロト イヨト イヨト イヨト

Convergence Rate

•
$$10^{-2}$$
, 10^{-3} , 10^{-4} , 10^{-5} ... (linear with $C = 10^{-1}$)

2
$$10^{-2}$$
, 10^{-4} , 10^{-6} , 10^{-8} ... (linear with $C = 10^{-2}$)

$$10^{-2}$$
, 10^{-4} , 10^{-8} , 10^{-16} ...(quadratic)

$$(10^{-2}, 10^{-6}, 10^{-18}, \dots \text{ (cubic)})$$

- Linear: Adds one digit of accuracy at each step
- Quadratic: Doubles the number of digits at each step

- Ever wondered how a computer process performs division?
- "Long" division requires lookup, subtraction, shifts
- Generates one digit and a time. Can we do better?

To answer this, we need to look at faster methods than bisection

Newton's Method

For a current guess x_k , use $f(x_k)$ and the slope $f'(x_k)$ to predict where f(x) crosses the *x* axis.

Expand f(x) in Taylor Series around x_k

$$f(x_k + \Delta x) = f(x_k) + \Delta x \left. \frac{df}{dx} \right|_{x_k} + \frac{(\Delta x)^2}{2} \left. \frac{d^2 f}{dx^2} \right|_{x_k} + \dots$$

Substitute $\Delta x = x_{k+1} - x_k$ and neglect 2^{nd} order terms to get

$$f(x_{k+1}) \approx f(x_k) + (x_{k+1} - x_k)f'(x_k)$$

where

$$f'(x_k) = \left. \frac{df}{dx} \right|_{x_k}$$

- - 1

Goal is to find x such that f(x) = 0. Set $f(x_{k+1}) = 0$ and solve for x_{k+1}

$$0 = f(x_k) + (x_{k+1} - x_k)f'(x_k)$$

or, solving for x_{k+1}

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

3 × 1

initialize:
$$x_1 = \dots$$

for $k = 2, 3, \dots$
 $x_k = x_{k-1} - f(x_{k-1})/f'(x_{k-1})$
if converged, stop

◆□▶ ◆□▶ ◆三▶

1

E

Solve:

$$x - x^{1/3} - 2 = 0$$

First derivative is

$$f'(x) = 1 - \frac{1}{3}x^{-2/3}$$

The iteration formula is

$$x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}}$$

3 ×

Newton's Method Example

$$x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679
2	3.52138015	0.85598641	$3.771 imes 10^{-7}$
3	3.52137971	0.85598640	2.664×10^{-15}
4	3.52137971	0.85598640	0.0

Conclusion

- Newton's method converges much more quickly than bisection
- Newton's method requires an analytical formula for f'(x)
- The algorithm is simple as long as f'(x) is available.
- Iterations are not guaranteed to stay inside an ordinal bracket.

David Semeraro (NCSA

Divergence of Newton's Method

Since

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

the new guess, x_{k+1} , will be far from the old guess whenever $f'(x_k) \approx 0$

Image: A matrix

Divergence of Newton's Method

Can you guess?

http://www.math.umn.edu/~garrett/qy/Newton.html

Newton's Method: Convergence

Recall

Convergence of a method is said to be of order r if there is a constant C > 0 such that

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^r} = C$$

Newton's method is of order 2 (quadratic) when $f'(x_*) \neq 0$. For ξ between x_k

and x_*

$$f(x_*) = f(x_k) + (x_* - x_k)f'(x_k) + \frac{1}{2}(x_* - x_k)^2 f''(\xi) = 0$$

So

$$\frac{f(x_k)}{f'(x_k)} + x_* - x_k + \frac{(x_* - x_k)^2}{2} \frac{f''(\xi)}{f'(x_k)} = 0$$

Then

$$x_* - x_{k+1} + \frac{1}{2}(x_* - x_k)\frac{2f''(\xi)}{f'(x_k)} = 0$$

Thus

$$\frac{|x_* - x_{k+1}|}{|x_* - x_k|^2} = \frac{1}{2} \frac{f''(\xi)}{f'(x_k)}$$

- Consider the task of computing 1/q for some q without using division.
- We can write this as: find the root x of f(x) = 1/(xq) 1 = 0.
- What is Newton's Method for this?
- $f'(x) = -1/(x^2q)$. Thus

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

or

$$x_{n+1} = x_n - \frac{1/(x_n q) - 1}{-1/(x_n^2 q)}$$

<ロト < 団ト < 巨ト < 巨ト

- Consider the task of computing 1/q for some q without using division.
- We can write this as: find the root x of f(x) = 1/(xq) 1 = 0.
- What is Newton's Method for this?
- $f'(x) = -1/(x^2q)$. Thus

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

or

$$x_{n+1} = x_n - \frac{1/(x_n q) - 1}{-1/(x_n^2 q)} \frac{x_n^2 q}{x_n^2 q}$$

$$x_{n+1} = x_n + x_n - x_n^2 q = 2x_n - x_n^2 q$$

<ロ> <同> <同> < 同> < 同> < 同

- Find the bracket:
- 1/2 > 1/3 > 1/4

•
$$x_0 = 1/4$$

• $x_1 = 2x_0 - x_0^2 q = 1/2 - 3/16 = 5/16$
• $x_2 = 2 \times 5/2^4 - 3 \times 25/2^8 = (160 - 75)/2^8 = 85/2^8$
• $x_3 = 2 \times 85/2^8 - 3 \times 85^2/2^{16} = 21845/2^{16}$

In 3 steps, computed 16 bits in 1/3

< □ > < @