
Lecture 11
Rootfinding

David Semeraro

University of Illinois at Urbana-Champaign

October 1, 2013

David Semeraro (NCSA) CS 357 October 1, 2013 1 / 38

Some Motivation

Not all problems are as easy to solve as linear systems of equations
Even the 5th-order polynomial has no closed form solution
Many problems fall into this category:

I Where should wireless access points be placed? How many?
I Where do two curved surfaces intersect?
I What is the subsurface geology in the Los Angeles basin?

How do we solve these problems? Iterate, getting closer (we hope!) each
time.

David Semeraro (NCSA) CS 357 October 1, 2013 2 / 38

What Next?

We need to study some iterations.
iteratively finding a root to an equation
iteratively finding the solution to an algebraic system
iteratively finding solutions to Ordinary Differential Equations (ODEs)
...

David Semeraro (NCSA) CS 357 October 1, 2013 3 / 38

Root Finding

Given a function f (x), find x so that f (x) = 0

David Semeraro (NCSA) CS 357 October 1, 2013 4 / 38

Rootfinding

Goals:
Find roots to equations
Compare usability of different methods
Compare convergence properties of different methods

1 bracketing methods
2 Bisection Method
3 Newton’s Method
4 Secant Method
5 (opt) fixed point iterations
6 (opt) special Case: Roots of Polynomials

David Semeraro (NCSA) CS 357 October 1, 2013 5 / 38

Roots of f (x)

Any single valued function can be written as f (x) = 0

Example
Find x so that cos (x) = x
That is, find where f (x) = cos (x) − x = 0

David Semeraro (NCSA) CS 357 October 1, 2013 6 / 38

Analyze your Application

Is the function complicated to evaluate?
I lots of expresions?
I singularities?
I simplify? polynomial?

How accuracte does our root need to be?
How fast/robust should our method be?

!
From this, you can pick the right method...

David Semeraro (NCSA) CS 357 October 1, 2013 7 / 38

Basic Root Finding Strategy

1 Plot the function
I Get an initial guess
I Identify problematic parts

2 Start with the initial guess and iterate

David Semeraro (NCSA) CS 357 October 1, 2013 8 / 38

Bracket Basics

A root x is bracketed on [a, b] if f (a) and f (b) have opposite sign.
Changing signs does not guarantee bracketed, however: singularity

Bracketing helps get an initial guess

David Semeraro (NCSA) CS 357 October 1, 2013 9 / 38

Bracket Algorithm

Listing 1: Bracket Algorithm
1 given: f (x), xmin, xmax, n
2

3 dx = (xmax − xmin)/n
4 xleft = xmin

5 i = 0
6

7 while i < n
8 i = i + 1
9 xright = xleft + dx

10 if f (x) changes sign in [xleft, xright]
11 save [xleft, xright] as an interval with a root
12 end

13 xleft = xright

David Semeraro (NCSA) CS 357 October 1, 2013 10 / 38

Testing Sign

f (a)× f (b) < 0
Should we use?

fa = myfunc(a);

fb = myfunc(b);

if(fa*fb<0)

(save)

end

David Semeraro (NCSA) CS 357 October 1, 2013 11 / 38

Better Sign Test

!
Nope. Underflow...

sign()

Use Python’s sign

fa = myfunc(a);

fb = myfunc(b);

import numpy as np

if(np.sign(fa) != np.sign(fb))

(save)

end

David Semeraro (NCSA) CS 357 October 1, 2013 12 / 38

Moving forward...

Bracketing is fine. But we need to find the actual root:
Bisection
Newton’s Method
Secant Method
Fixed Point Iteration

Process:
1 use bracket.py to get a visual and brackets
2 search brackets with these methods

David Semeraro (NCSA) CS 357 October 1, 2013 13 / 38

Bisection

Given a bracketed root, halve the interval while continuing to bracket the root

a b

f (b1)

x1x2

f (x1)

f (a1)

David Semeraro (NCSA) CS 357 October 1, 2013 14 / 38

Bisection (2)

For the bracket interval [a, b] the
midpoint is

xm =
1
2
(a + b)

idea:
1 split bracket in half
2 select the bracket that has the

root
3 goto step 1

David Semeraro (NCSA) CS 357 October 1, 2013 15 / 38

Bisection Algorithm

Listing 2: Bisection
1 initialize: a = . . ., b = . . .
2 for k = 1, 2, . . .
3 xm = a + (b − a)/2
4 if sign (f (xm)) = sign (f (xa))
5 a = xm

6 else

7 b = xm

8 end

9 if converged , stop

10 end

David Semeraro (NCSA) CS 357 October 1, 2013 16 / 38

Bisection Example
Solve with bisection:

x − x1/3 − 2 = 0

k a b xmid f (xmid)

0 3 4

1 3 4 3.5 -0.01829449

2 3.5 4 3.75 0.19638375

3 3.5 3.75 3.625 0.08884159

4 3.5 3.625 3.5625 0.03522131

5 3.5 3.5625 3.53125 0.00845016

6 3.5 3.53125 3.515625 -0.00492550

7 3.51625 3.53125 3.5234375 0.00176150

8 3.51625 3.5234375 3.51953125 -0.00158221

9 3.51953125 3.5234375 3.52148438 0.00008959

10 3.51953125 3.52148438 3.52050781 -0.00074632

David Semeraro (NCSA) CS 357 October 1, 2013 17 / 38

Analysis of Bisection
Let δn be the size of the bracketing interval at the nth stage of bisection. Then

δ0 = b − a = initial bracketing interval

δ1 =
1
2
δ0

δ2 =
1
2
δ1 =

1
4
δ0

...

δn =

(
1
2

)n

δ0

=⇒ δn

δ0
=

(
1
2

)n

= 2−n

or n = log2

(
δn

δ0

)
David Semeraro (NCSA) CS 357 October 1, 2013 18 / 38

Analysis of Bisection

δn

δ0
=

(
1
2

)n

= 2−n or n = log2

(
δn

δ0

)

n
δn

δ0

function
evaluations

5 3.1× 10−2 7

10 9.8× 10−4 12

20 9.5× 10−7 22

30 9.3× 10−10 32

40 9.1× 10−13 42

50 8.9× 10−16 52

David Semeraro (NCSA) CS 357 October 1, 2013 19 / 38

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the
root and stop when current guess is close enough to the desired root.

Convergence checking will avoid searching to unnecessary accuracy.
Check how closeness of successive approximations

|xk − xk−1| < δx

Check how close f (x) is to zero at the current guess.

|f (xk)| < δf

Which one you use depends on the problem being solved

David Semeraro (NCSA) CS 357 October 1, 2013 20 / 38

Convergence Criteria on x

f (x)

true root

tolerance
on x

tolerance
on f (x) x

xk = current guess at the root
xk−1 = previous guess at the root

Absolute tolerance:
∣∣xk − xk−1

∣∣ < δx

Relative tolerance:

∣∣∣∣∣xk − xk−1

b − a

∣∣∣∣∣ < δ̂x

David Semeraro (NCSA) CS 357 October 1, 2013 21 / 38

Convergence Criteria on f (x)

f (x)

true root

tolerance
on x

tolerance
on f (x) x

Absolute tolerance:
∣∣f (xk)

∣∣ < δf

Relative tolerance:

|f (xk)| < δ̂f max
{
|f (a0)|, |f (b0)|

}
where a0 and b0 are the original brackets

David Semeraro (NCSA) CS 357 October 1, 2013 22 / 38

Convergence Criteria Compared
If f ′(x) is small near the root, it is easy to satisfy tolerance on f (x) for a large
range of ∆x. The tolerance on ∆x is more conservative

f (x)

x

If f ′(x) is large near the root, it is possible to satisfy the tolerance on ∆x when
|f (x)| is still large. The tolerance on f (x) is more conservative

f (x)

x

David Semeraro (NCSA) CS 357 October 1, 2013 23 / 38

Relationship Between Criteria

How are the criteria on x and f (x) related? Consider the ratio of the two
criteria

f (xb) − f (xa)

xb − xa

The limit of this as xa and xb converge to the exact answer x∗ is just f ′(x∗).
We can thus expect (this is not yet a proof) that

|f (xb) − f (xa)| ≈ |f ′(x∗)||xb − xa|

as xa and xb approach the solution x∗.

David Semeraro (NCSA) CS 357 October 1, 2013 24 / 38

Convergence rate of a root finding iteration

Let en = x∗ − xn be the error.
In general, a sequence is said to converge with rate r if

lim
k→∞

|en+1|

|en|r
= C

Special Cases:
If r = 1 and C < 1, then the rate is linear
If r = 2 and C > 0, then the rate is quadratic
If r = 3 and C > 0, then the rate is cubic

David Semeraro (NCSA) CS 357 October 1, 2013 25 / 38

Example

Convergence Rate
1 10−2, 10−3, 10−4, 10−5...

(linear with C = 10−1)

2 10−2, 10−4, 10−6, 10−8...

(linear with C = 10−2)

3 10−2, 10−4, 10−8, 10−16...

(quadratic)

4 10−2, 10−6, 10−18, ...

(cubic)

Linear: Adds one digit of accuracy at each step
Quadratic: Doubles the number of digits at each step

David Semeraro (NCSA) CS 357 October 1, 2013 26 / 38

Example

Convergence Rate
1 10−2, 10−3, 10−4, 10−5... (linear with C = 10−1)
2 10−2, 10−4, 10−6, 10−8... (linear with C = 10−2)
3 10−2, 10−4, 10−8, 10−16...(quadratic)
4 10−2, 10−6, 10−18, ... (cubic)

Linear: Adds one digit of accuracy at each step
Quadratic: Doubles the number of digits at each step

David Semeraro (NCSA) CS 357 October 1, 2013 26 / 38

Performing Division

Ever wondered how a computer process performs division?
“Long” division requires lookup, subtraction, shifts
Generates one digit and a time. Can we do better?

To answer this, we need to look at faster methods than bisection

David Semeraro (NCSA) CS 357 October 1, 2013 27 / 38

Newton’s Method

x1
x2

f(x1)

f(x2)

x3

For a current guess xk, use f (xk) and the slope f ′(xk) to predict where f (x)
crosses the x axis.

David Semeraro (NCSA) CS 357 October 1, 2013 28 / 38

Newton’s Method

Expand f (x) in Taylor Series around xk

f (xk + ∆x) = f (xk) + ∆x
df
dx

∣∣∣∣
xk

+
(∆x)2

2
d2f
dx2

∣∣∣∣
xk

+ . . .

Substitute ∆x = xk+1 − xk
and neglect 2nd order terms to get

f (xk+1) ≈ f (xk) + (xk+1 − xk) f ′(xk)

where

f ′(xk) =
df
dx

∣∣∣∣
xk

David Semeraro (NCSA) CS 357 October 1, 2013 29 / 38

Newton’s Method

Goal is to find x such that f (x) = 0.
Set f (xk+1) = 0 and solve for xk+1

0 = f (xk) + (xk+1 − xk) f ′(xk)

or, solving for xk+1

xk+1 = xk −
f (xk)

f ′(xk)

David Semeraro (NCSA) CS 357 October 1, 2013 30 / 38

Newton’s Method Algorithm

1 initialize: x1 = . . .
2 for k = 2, 3, . . .
3 xk = xk−1 − f (xk−1)/f ′(xk−1)
4 if converged , stop

5 end

David Semeraro (NCSA) CS 357 October 1, 2013 31 / 38

Newton’s Method Example

Solve:
x − x1/3 − 2 = 0

First derivative is
f ′(x) = 1 −

1
3

x−2/3

The iteration formula is

xk+1 = xk −
xk − x1/3

k − 2

1 − 1
3 x−2/3

k

David Semeraro (NCSA) CS 357 October 1, 2013 32 / 38

Newton’s Method Example

xk+1 = xk −
xk − x1/3

k − 2

1 − 1
3 x−2/3

k

k xk f ′(xk) f (x)

0 3 0.83975005 -0.44224957

1 3.52664429 0.85612976 0.00450679

2 3.52138015 0.85598641 3.771× 10−7

3 3.52137971 0.85598640 2.664× 10−15

4 3.52137971 0.85598640 0.0

Conclusion
Newton’s method converges much more quickly than bisection
Newton’s method requires an analytical formula for f ′(x)
The algorithm is simple as long as f ′(x) is available.
Iterations are not guaranteed to stay inside an ordinal bracket.
David Semeraro (NCSA) CS 357 October 1, 2013 33 / 38

Divergence of Newton’s Method

x1

f(x1)

f '(x1) ≈ 0

Since
xk+1 = xk −

f (xk)

f ′(xk)

the new guess, xk+1, will be far from the old guess whenever f ′(xk) ≈ 0

David Semeraro (NCSA) CS 357 October 1, 2013 34 / 38

Divergence of Newton’s Method
Can you guess?

http://www.math.umn.edu/˜garrett/qy/Newton.html

David Semeraro (NCSA) CS 357 October 1, 2013 35 / 38

Newton’s Method: Convergence

Recall
Convergence of a method is said to be of order r if there is a constant C > 0
such that

lim
k→∞

|ek+1|

|ek|r
= C

Newton’s method is of order 2 (quadratic) when f ′(x∗) , 0. For ξ between xk

and x∗
f (x∗) = f (xk) + (x∗ − xk)f ′(xk) +

1
2
(x∗ − xk)

2f ′′(ξ) = 0

So
f (xk)

f ′(xk)
+ x∗ − xk +

(x∗ − xk)
2

2
f ′′(ξ)
f ′(xk)

= 0

Then
x∗ − xk+1 +

1
2
(x∗ − xk)

2 f ′′(ξ)
f ′(xk)

= 0

Thus
|x∗ − xk+1|

|x∗ − xk|
2 =

1
2

f ′′(ξ)
f ′(xk)

David Semeraro (NCSA) CS 357 October 1, 2013 36 / 38

Reciprocal Approximation

Consider the task of computing 1/q for some q without using division.
We can write this as: find the root x of f (x) = 1/(xq) − 1 = 0.
What is Newton’s Method for this?
f ′(x) = −1/(x2q). Thus

xn+1 = xn −
f (xn)

f ′(xn)

or

xn+1 = xn −
1/(xnq) − 1
−1/(x2

nq)

x2
nq

x2
nq

xn+1 = xn + xn − x2
nq = 2xn − x2

nq

David Semeraro (NCSA) CS 357 October 1, 2013 37 / 38

Reciprocal Approximation

Consider the task of computing 1/q for some q without using division.
We can write this as: find the root x of f (x) = 1/(xq) − 1 = 0.
What is Newton’s Method for this?
f ′(x) = −1/(x2q). Thus

xn+1 = xn −
f (xn)

f ′(xn)

or

xn+1 = xn −
1/(xnq) − 1
−1/(x2

nq)
x2

nq
x2

nq

xn+1 = xn + xn − x2
nq = 2xn − x2

nq

David Semeraro (NCSA) CS 357 October 1, 2013 37 / 38

Example: Compute 1/3

Find the bracket:
1/2 > 1/3 > 1/4

1 x0 = 1/4
2 x1 = 2x0 − x2

0q = 1/2 − 3/16 = 5/16
3 x2 = 2× 5/24 − 3× 25/28 = (160 − 75)/28 = 85/28

4 x3 = 2× 85/28 − 3× 852/216 = 21845/216

In 3 steps, computed 16 bits in 1/3

David Semeraro (NCSA) CS 357 October 1, 2013 38 / 38

