
Lecture 11
Rootfinding

David Semeraro

University of Illinois at Urbana-Champaign

October 1, 2013

David Semeraro (NCSA) CS 357 October 1, 2013 1 / 38



Some Motivation

Not all problems are as easy to solve as linear systems of equations
Even the 5th-order polynomial has no closed form solution
Many problems fall into this category:

I Where should wireless access points be placed? How many?
I Where do two curved surfaces intersect?
I What is the subsurface geology in the Los Angeles basin?

How do we solve these problems? Iterate, getting closer (we hope!) each
time.
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What Next?

We need to study some iterations.
iteratively finding a root to an equation
iteratively finding the solution to an algebraic system
iteratively finding solutions to Ordinary Differential Equations (ODEs)
...
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Root Finding

Given a function f (x), find x so that f (x) = 0
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Rootfinding

Goals:
Find roots to equations
Compare usability of different methods
Compare convergence properties of different methods

1 bracketing methods
2 Bisection Method
3 Newton’s Method
4 Secant Method
5 (opt) fixed point iterations
6 (opt) special Case: Roots of Polynomials
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Roots of f (x)

Any single valued function can be written as f (x) = 0

Example
Find x so that cos (x) = x
That is, find where f (x) = cos (x) − x = 0
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Analyze your Application

Is the function complicated to evaluate?
I lots of expresions?
I singularities?
I simplify? polynomial?

How accuracte does our root need to be?
How fast/robust should our method be?

!
From this, you can pick the right method...
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Basic Root Finding Strategy

1 Plot the function
I Get an initial guess
I Identify problematic parts

2 Start with the initial guess and iterate
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Bracket Basics

A root x is bracketed on [a, b] if f (a) and f (b) have opposite sign.
Changing signs does not guarantee bracketed, however: singularity

Bracketing helps get an initial guess
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Bracket Algorithm

Listing 1: Bracket Algorithm
1 given: f (x), xmin, xmax, n
2

3 dx = (xmax − xmin)/n
4 xleft = xmin

5 i = 0
6

7 while i < n
8 i = i + 1
9 xright = xleft + dx

10 if f (x) changes sign in [xleft, xright]
11 save [xleft, xright] as an interval with a root
12 end

13 xleft = xright
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Testing Sign

f (a)× f (b) < 0
Should we use?

fa = myfunc(a);

fb = myfunc(b);

if(fa*fb<0)

(save)

end
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Better Sign Test

!
Nope. Underflow...

sign()

Use Python’s sign

fa = myfunc(a);

fb = myfunc(b);

import numpy as np

if(np.sign(fa) != np.sign(fb))

(save)

end
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Moving forward...

Bracketing is fine. But we need to find the actual root:
Bisection
Newton’s Method
Secant Method
Fixed Point Iteration

Process:
1 use bracket.py to get a visual and brackets
2 search brackets with these methods
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Bisection

Given a bracketed root, halve the interval while continuing to bracket the root

a b

f  (b1)

x1x2

f  (x1)

f  (a1)
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Bisection (2)

For the bracket interval [a, b] the
midpoint is

xm =
1
2
(a + b)

idea:
1 split bracket in half
2 select the bracket that has the

root
3 goto step 1
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Bisection Algorithm

Listing 2: Bisection
1 initialize: a = . . ., b = . . .
2 for k = 1, 2, . . .
3 xm = a + (b − a)/2
4 if sign (f (xm)) = sign (f (xa))
5 a = xm

6 else

7 b = xm

8 end

9 if converged , stop

10 end
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Bisection Example
Solve with bisection:

x − x1/3 − 2 = 0

k a b xmid f (xmid)

0 3 4

1 3 4 3.5 -0.01829449

2 3.5 4 3.75 0.19638375

3 3.5 3.75 3.625 0.08884159

4 3.5 3.625 3.5625 0.03522131

5 3.5 3.5625 3.53125 0.00845016

6 3.5 3.53125 3.515625 -0.00492550

7 3.51625 3.53125 3.5234375 0.00176150

8 3.51625 3.5234375 3.51953125 -0.00158221

9 3.51953125 3.5234375 3.52148438 0.00008959

10 3.51953125 3.52148438 3.52050781 -0.00074632
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Analysis of Bisection
Let δn be the size of the bracketing interval at the nth stage of bisection. Then

δ0 = b − a = initial bracketing interval

δ1 =
1
2
δ0

δ2 =
1
2
δ1 =

1
4
δ0

...

δn =

(
1
2

)n

δ0

=⇒ δn

δ0
=

(
1
2

)n

= 2−n

or n = log2

(
δn

δ0

)
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Analysis of Bisection

δn

δ0
=

(
1
2

)n

= 2−n or n = log2

(
δn

δ0

)

n
δn

δ0

function
evaluations

5 3.1× 10−2 7

10 9.8× 10−4 12

20 9.5× 10−7 22

30 9.3× 10−10 32

40 9.1× 10−13 42

50 8.9× 10−16 52
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Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the
root and stop when current guess is close enough to the desired root.

Convergence checking will avoid searching to unnecessary accuracy.
Check how closeness of successive approximations

|xk − xk−1| < δx

Check how close f (x) is to zero at the current guess.

|f (xk)| < δf

Which one you use depends on the problem being solved
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Convergence Criteria on x

f (x)

true root

tolerance
on x

tolerance
on f (x) x

xk = current guess at the root
xk−1 = previous guess at the root

Absolute tolerance:
∣∣xk − xk−1

∣∣ < δx

Relative tolerance:

∣∣∣∣∣xk − xk−1

b − a

∣∣∣∣∣ < δ̂x

David Semeraro (NCSA) CS 357 October 1, 2013 21 / 38



Convergence Criteria on f (x)

f (x)

true root

tolerance
on x

tolerance
on f (x) x

Absolute tolerance:
∣∣f (xk)

∣∣ < δf

Relative tolerance:

|f (xk)| < δ̂f max
{
|f (a0)|, |f (b0)|

}
where a0 and b0 are the original brackets
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Convergence Criteria Compared
If f ′(x) is small near the root, it is easy to satisfy tolerance on f (x) for a large
range of ∆x. The tolerance on ∆x is more conservative

f (x)

x

If f ′(x) is large near the root, it is possible to satisfy the tolerance on ∆x when
|f (x)| is still large. The tolerance on f (x) is more conservative

f (x)

x
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Relationship Between Criteria

How are the criteria on x and f (x) related? Consider the ratio of the two
criteria

f (xb) − f (xa)

xb − xa

The limit of this as xa and xb converge to the exact answer x∗ is just f ′(x∗).
We can thus expect (this is not yet a proof) that

|f (xb) − f (xa)| ≈ |f ′(x∗)||xb − xa|

as xa and xb approach the solution x∗.
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Convergence rate of a root finding iteration

Let en = x∗ − xn be the error.
In general, a sequence is said to converge with rate r if

lim
k→∞

|en+1|

|en|r
= C

Special Cases:
If r = 1 and C < 1, then the rate is linear
If r = 2 and C > 0, then the rate is quadratic
If r = 3 and C > 0, then the rate is cubic
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Example

Convergence Rate
1 10−2, 10−3, 10−4, 10−5...

(linear with C = 10−1)

2 10−2, 10−4, 10−6, 10−8...

(linear with C = 10−2)

3 10−2, 10−4, 10−8, 10−16...

(quadratic)

4 10−2, 10−6, 10−18, ...

(cubic)

Linear: Adds one digit of accuracy at each step
Quadratic: Doubles the number of digits at each step
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Performing Division

Ever wondered how a computer process performs division?
“Long” division requires lookup, subtraction, shifts
Generates one digit and a time. Can we do better?

To answer this, we need to look at faster methods than bisection
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Newton’s Method

x1
x2

f(x1)

f(x2)

x3

For a current guess xk, use f (xk) and the slope f ′(xk) to predict where f (x)
crosses the x axis.
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Newton’s Method

Expand f (x) in Taylor Series around xk

f (xk + ∆x) = f (xk) + ∆x
df
dx

∣∣∣∣
xk

+
(∆x)2

2
d2f
dx2

∣∣∣∣
xk

+ . . .

Substitute ∆x = xk+1 − xk
and neglect 2nd order terms to get

f (xk+1) ≈ f (xk) + (xk+1 − xk) f ′(xk)

where

f ′(xk) =
df
dx

∣∣∣∣
xk
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Newton’s Method

Goal is to find x such that f (x) = 0.
Set f (xk+1) = 0 and solve for xk+1

0 = f (xk) + (xk+1 − xk) f ′(xk)

or, solving for xk+1

xk+1 = xk −
f (xk)

f ′(xk)
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Newton’s Method Algorithm

1 initialize: x1 = . . .
2 for k = 2, 3, . . .
3 xk = xk−1 − f (xk−1)/f ′(xk−1)
4 if converged , stop

5 end
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Newton’s Method Example

Solve:
x − x1/3 − 2 = 0

First derivative is
f ′(x) = 1 −

1
3

x−2/3

The iteration formula is

xk+1 = xk −
xk − x1/3

k − 2

1 − 1
3 x−2/3

k
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Newton’s Method Example

xk+1 = xk −
xk − x1/3

k − 2

1 − 1
3 x−2/3

k

k xk f ′(xk) f (x)

0 3 0.83975005 -0.44224957

1 3.52664429 0.85612976 0.00450679

2 3.52138015 0.85598641 3.771× 10−7

3 3.52137971 0.85598640 2.664× 10−15

4 3.52137971 0.85598640 0.0

Conclusion
Newton’s method converges much more quickly than bisection
Newton’s method requires an analytical formula for f ′(x)
The algorithm is simple as long as f ′(x) is available.
Iterations are not guaranteed to stay inside an ordinal bracket.
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Divergence of Newton’s Method

x1

f(x1)

f '(x1) ≈ 0

Since
xk+1 = xk −

f (xk)

f ′(xk)

the new guess, xk+1, will be far from the old guess whenever f ′(xk) ≈ 0
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Divergence of Newton’s Method
Can you guess?

http://www.math.umn.edu/˜garrett/qy/Newton.html
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Newton’s Method: Convergence

Recall
Convergence of a method is said to be of order r if there is a constant C > 0
such that

lim
k→∞

|ek+1|

|ek|r
= C

Newton’s method is of order 2 (quadratic) when f ′(x∗) , 0. For ξ between xk

and x∗
f (x∗) = f (xk) + (x∗ − xk)f ′(xk) +

1
2
(x∗ − xk)

2f ′′(ξ) = 0

So
f (xk)

f ′(xk)
+ x∗ − xk +

(x∗ − xk)
2

2
f ′′(ξ)
f ′(xk)

= 0

Then
x∗ − xk+1 +

1
2
(x∗ − xk)

2 f ′′(ξ)
f ′(xk)

= 0

Thus
|x∗ − xk+1|

|x∗ − xk|
2 =

1
2

f ′′(ξ)
f ′(xk)
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Reciprocal Approximation

Consider the task of computing 1/q for some q without using division.
We can write this as: find the root x of f (x) = 1/(xq) − 1 = 0.
What is Newton’s Method for this?
f ′(x) = −1/(x2q). Thus

xn+1 = xn −
f (xn)

f ′(xn)

or

xn+1 = xn −
1/(xnq) − 1
−1/(x2

nq)

x2
nq

x2
nq

xn+1 = xn + xn − x2
nq = 2xn − x2

nq
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Example: Compute 1/3

Find the bracket:
1/2 > 1/3 > 1/4

1 x0 = 1/4
2 x1 = 2x0 − x2

0q = 1/2 − 3/16 = 5/16
3 x2 = 2× 5/24 − 3× 25/28 = (160 − 75)/28 = 85/28

4 x3 = 2× 85/28 − 3× 852/216 = 21845/216

In 3 steps, computed 16 bits in 1/3
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