Rootfinding: Secant Method

October 8, 2013

David Semeraro

Secant Method

* Given two guesses xj_q and xy, the next
guess at the root is where the line through
f(xy_1) and f(x;) crosses the x axis.

Secant Method

Given:

X_1 = previous guess
X, = current guess

Approximate the first derivative with:

f,(xk) ~ f) = f(xp-1)

Xk — Xk-1
Substitute f'(x;) into Newton’s method.

Secant Method

f(xg)

Xk+1 — Xk f,(xk)
Becomes:
Xk — Xk—-1

f(xk) — f(xk—1)

Xp+1 = X — f(x)

Secant Method

Two versions of Xi—Xk—1
formula are the [RLAZTET f G [f(xk)—f(xk_l)
equivalent in o v, . = LK1~ F (Xk—1)Xk
exact math: e+l f)= f (x-1)

Which is better e Cancellation?

computationally?

Secant Algorithm

Initialize x; =*, x, =x
fork = 2,3, ...
Xp+1 = X — f(xg) (g — xk—1)/(f(xk) — f(xk—l))
if converged stop
end

Secant Example

Solve:
1

x—x3—2=0

__

-0.44224957

3 3.51734262 -0.00345547

3.51734262 3.52141665 0.00003163

3.52141665 3.52137970 -2.034 10°

3.52137959 3.52137971 -1.332 105
3.52137971 3.52137971 0.0

o A W N —» O

Secant Example

 Conclusions:

— Converges almost as quickly as Newton’s method
(r =1.62).

— There is no need to compute f'(x).
— The algorithm is simple.
— Two initial guesses are necessary

— |terations are not guaranteed to stay inside an
ordinal bracket.

Divergence of Secant Method

SO |
Jex) T
l | ! .

X1 X3 X2

S L

Since
Xk — Xk-1

Xpaq1 = X — [(x2,)

ot e~ (% [f(xk) — f(xg-1)

the new guess, xj.,1, will be far from the old guess whenever f(x;) = f(x;_1)
and |f (xy)| is not small.

Summary

* Plot f(x) before searching for roots
* Bracketing finds coarse interval containing roots and singularities
e Bisection is robust, but converges slowly

 Newton’s Method
— Requires f(x) and f'(x)
— lterates are not confined to initial bracket.
— Converges rapidly (r = 2).
— Diverges if f'(x) = 0 is encountered.
* Secant Method
— Uses f(x) values to approximate f”(x)
— lterates are not confined to initial bracket.
— Converges almost as rapidly as Newton’s method (r = 1.62).
— Diverges if f'(x) = 0 is encountered.

Systems of Equations

* Single valued function of 1 variable.
 What about higher dimensions?

fl(xl'x21°°°1xn) =0
fZ(xlixZJ'"an) =0

fn(xpxz» 'xn) =0

Systems of Equations

F(X)=0
Where
F = [f1»f2» "'!fn]T

X =[x, %5, 0o, x5]"
Newton’s method becomes:
xk+D = x() _ [F/(xW)] 7 F(x00)

Systems of Equations

F'(x(k)) is the Jacobian Matrix.

Made up of the partial derivatives of F
evaluated at X (¥

X is the initial solution vector

The inverse of the Jacobian Matrix is not
computed but rather the related system of
equations solved.

e 3 equations in 3 variables
fl(x11x2'x3) = 0
f2(x1,%x2,%3) = 0
f3(x1,%x2,%3) = 0
e Use Taylor series expansion
fi(x1 + hy, x5 + hy, x5 + h3)

l a l a l
il ﬁ(xll X2, X3) T hlaf + h26£2 + h];
I oo

o Let X(O =[x, (0 x,(0), xg(o)] be the initial
approximate solution.
 Let H = [hq, hy, h3]" be a correction vector

such that X9 + H is a better approximate
solution.

* Discard the higher order terms in the Taylor
expansion and ...

0~F(XO+H)~FXO)+F(x®)H

Where:

0fi O0fi Ofi-
dx1 O0x, 0Xx3
F/(X(O)) _|9f2 9f; 9f;

9%, 0x, 0xs

9fs 9fz I9fz
axl axZ a.X'3

» Assume F'(X®)) is nonsingular.

e Solving for H = —[F’(X(O))]_lF(X(O))
« XU = x©) 4 His a better approximation.
* |[n general

x(e+1) — y () _ [F'(X(k))]_l F(x0)

1. Solve

[F'(X(k))][_](k) — —F(X(k))

2. Update
Xkt — y(k) 4 k)

Numerical Example

* 1, y) =2x*+3x—4—y=0
e HL(x,y) = x*+2x+3—-y=0

4x + 3, -1

FO)=lox+2, -1

Numerical Example

'.X'O=1,y0=1

-5.0 1.6667 11.6667
2.6667 12.6667 -5.5556 -2.7778 -0.4386 -0.4386
2.2281 12.2281 -0.3847 -0.1924 -0.3526 -0.3526
2.1928 12.1928 -0.0025 -0.0013 -0.0002 -0.0002
2.1926 12.1926 -1.06e-07 -5.33e-08 -9.89e-09 -9.89e-09

A W N - O

Numerical Example

40

35F
30
251
20
151
10

sk

0_

.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Roots of Polynomials

 Complications arise due to
— Repeated roots

— Complex roots
— Sensitivity of roots to small perturbations in the polynomial
coefficients (conditioning).

distinct - repeated complex
real roots - real roots Toots
-1
0 2 4 6 8 10

x (arbitrary units)

Algorithms for Finding Polynomial Roots

* Bairstow’s method
 Muller’s method

e Laguerre’s method

* Jenkin’s—Traub method
 Companion matrix method

roots Function

The built-in roots function in numpy uses the companion matrix
method

— No initial guess

— Returns all roots of the polynomial

— Solves eigenvalue problem for companion matrix
Write polynomial in the form:

Cox" +cx™ 1+t cx+c, =0

Then for a 3" order polynomial:
>>> coeff =[3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])

What is a Companion Matrix

o O O
o O
O = O
_ O O

Are the same as the roots of:
A+ A3+ A2+ A+ =0

Companion Matrix

To see this, recall Ax = Ax Is the equation satisfied by
eigenvalues of A.

Write this as (A — Al)x = 0.

Then the matrix
F—A 1 0 0

0 —A 1 0

0 0 —A 1
|—Cy —C€1 —C; —A—C3l

(A—A)x =

is singular and the determinant is zero. Because most of the
elements are zero the determinant can be computed.

f(x) = x% —10x + 25

Companion Matrix:

>>> np.roots(coef)

array([5., 5.])

>>> coef = [-25.0,10.0];

>>> A = scipy.array([[0.,1.],coef]);
>>> scipy.linalg.eig(A,right=False);
array([5.4+0.j, 5.+0.j])

* Fractal: A mathematical pattern (geometric
object) that is reproducible at any level of
magnification or reduction.

* Fractal: A term used by Benoit Mandelbrot to
refer to geometric objects with fractional
dimensions rather than integer dimensions.
Also used “fractal” to refer to shapes that are
self-similar: they look the same at any zoom
level.

Fractals

Scientifically used to describe highly irregular objects
e fractal image compression
Seismology
Cosmology
life sciences:
— clouds and fluid turbulence
— trees
— coastlines
 More interesting observations:
— New music/New art
— Video games/graphics
— Chaos theory
— the Butterfly effect: small changes produces large effects

Fractal Generated Terrain

Recall Complex Numbers: z € C means

Z = x + 1y

wherei =+v—1

* Things to notice:

— still tzhink of the x-y plane, but now it’s in C! instead
of R

— f(z) = z* + 1 has 2 roots z; , = +i

—f(z) = z°>+1has3rootsz; = 1,2, 3 = =L E]

— f(2) =z*+ 1 has4roots z;, = —1,23, = =i

Take a complex function like f(z) = z° + 1
Pick a bunch of initial guesses z, as the roots
Run Newton’s Method

The initial guesses z, will each converge to
one of n = 3 roots

Color each guess in the plane depending on
the root to which it converged.

e
(O
)
O
(O
. -
L

