Lecture 13 Interpolation

David Semeraro

University of Illinois at Urbana-Champaign

October 10, 2013

- Interpolation: Approximating a function f(x) by a polynomial $p_n(x)$.
- **②** Differentiation: Approximating the derivative of a function f(x).
- Integration: Approximating an integral $\int_{a}^{b} f(x) dx$

Image: Image:

Objective

Approximate an unknown function f(x) by an easier function g(x), such as a polynomial.

Objective (alt)

Approximate some data by a function g(x).

Types of approximating functions:

- Polynomials
- Piecewise polynomials
- Rational functions
- Trig functions
- Others (inverse, exponential, Bessel, etc)

How do we approximate f(x) by g(x)? In what sense is the approximation a good one?

- Interpolation: g(x) must have the same values of f(x) at set of given points.
- **2** Least-squares: g(x) must deviate as little as possible from f(x) in the sense of a 2-norm: minimize $\int_a^b |f(t) g(t)|^2 dt$
- ◎ Chebyshev: g(x) must deviate as little as possible from f(x) in the sense of the ∞-norm: minimize $\max_{t \in [a,b]} |f(t) g(t)|$.

Interpolation: Introduction

Given n + 1 distinct points $x_0, ..., x_n$, and values $y_0, ..., y_n$, find a polynomial p(x) of degree n so that

$$p(x_i) = y_i \quad i = 0, \ldots, n$$

• A polynomial of degree *n* has *n*+1 degrees-of-freedom:

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

• n+1 constraints determine the polynomial uniquely:

$$p(x_i) = y_i, \quad i = 0, \ldots, n$$

Theorem (page 128 6thEd)

If points x_0, \ldots, x_n are distinct, then for arbitrary y_0, \ldots, y_n , there is a *unique* polynomial p(x) of degree at most n such that $p(x_i) = y_i$ for $i = 0, \ldots, n$.

Monomials

Obvious attempt: try picking

$$p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

So for each x_i we have

$$p(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n = y_i$$

OR

$$a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n}x_{0}^{n} = y_{0}$$

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n}x_{1}^{n} = y_{1}$$

$$a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \dots + a_{n}x_{2}^{n} = y_{2}$$

$$a_{0} + a_{1}x_{3} + a_{2}x_{3}^{2} + \dots + a_{n}x_{n}^{n} = y_{3}$$

$$\vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n}x_{n}^{n} = y_{n}$$

3 ×

Monomial: The problem

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ & & \vdots & \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Question

• Is this a "good" system to solve?

Consider Gas prices (in cents) for the following years:

```
vear
             1986 1988 1990
                                    1992
                                             1994
                                                     1996
  х
             133.5
                     132.2
                             138.7
                                     141.5
                                             137.6
                                                     144.2
      price
  V
_{1} year = [1986 1988
                         1990
                                 1992
                                         1994
                                                 1996 ]';
<sup>2</sup> price=[133.5 132.2
                         138.7 141.5 137.6 144.2]';
3
4 M = vander(year);
5 a = M \setminus price;
6
7 x=linspace(1986,1996,200);
8 p=polyval(a,x);
9 plot(year, price, 'o', x, p, '-');
```

Back to the basics...

Example

Find the interpolating polynomial of least degree that interpolates

x	1.4	1.25
y	3.7	3.9

Directly

$$p_1(x) = \left(\frac{x - 1.25}{1.4 - 1.25}\right) 3.7 + \left(\frac{x - 1.4}{1.25 - 1.4}\right) 3.9$$
$$= 3.7 + \left(\frac{3.9 - 3.7}{1.25 - 1.4}\right) (x - 1.4)$$
$$= 3.7 - \frac{4}{3}(x - 1.4)$$

What have we done? We've written p(x) as

$$p(x) = \left(\frac{x - x_1}{x_0 - x_1}\right) y_0 + \left(\frac{x - x_0}{x_1 - x_0}\right) y_1$$

- the sum of two linear polynomials
- the first is zero at x₁ and 1 at x₀
- the second is zero at x₀ and 1 at x₁
- these are the two linear Lagrange basis functions:

$$\ell_0(x) = \frac{x - x_1}{x_0 - x_1} \qquad \ell_1(x) = \frac{x - x_0}{x_1 - x_0}$$

Lagrange

Example

Write the Lagrange basis functions for

Directly

$$\ell_0(x) = \frac{(x - \frac{1}{4})(x - 1)}{(\frac{1}{3} - \frac{1}{4})(\frac{1}{3} - 1)}$$
$$\ell_1(x) = \frac{(x - \frac{1}{3})(x - 1)}{(\frac{1}{4} - \frac{1}{3})(\frac{1}{4} - 1)}$$
$$\ell_2(x) = \frac{(x - \frac{1}{3})(x - \frac{1}{4})}{(1 - \frac{1}{3})(1 - \frac{1}{4})}$$

 $\langle \Box \rangle \langle \Box \rangle$

I

The general Lagrange form is

$$\ell_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$

The resulting interpolating polynomial is

$$p(x) = \sum_{k=0}^{n} \ell_k(x) y_k$$

Example

Find the equation of the parabola passing through the points (1,6), (-1,0), and (2, 12)

 $x_0 = 1, x_1 = -1, x_2 = 2;$ $y_0 = 6, y_1 = 0, y_2 = 12;$

$$\begin{array}{rcl} \ell_0(x) & = & \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} & = & \frac{(x+1)(x-2)}{(2)(-1)} \\ \ell_1(x) & = & \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} & = & \frac{(x-1)(x-2)}{(-2)(-3)} \\ \ell_2(x) & = & \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} & = & \frac{(x-1)(x+1)}{(1)(3)} \end{array}$$

$$p_{2}(x) = y_{0}\ell_{0}(x) + y_{1}\ell_{1}(x) + y_{2}\ell_{2}(x)$$

$$= -3 \times (x+1)(x-2) + 0 \times \frac{1}{6}(x-1)(x-2)$$

$$+4 \times (x-1)(x+1)$$

$$= (x+1)[4(x-1) - 3(x-2)]$$

$$= (x+1)(x+2)$$

- Monomials: $p(x) = a_0 + a_1x + \cdots + a_nx^n$ results in poor conditioning
- Monomials: but evaluating the Monomial interpolant is cheap (nested iteration)
- Lagrange: $p(x) = \ell_0(x)y_0 + \cdots + \ell_n(x)y_n$ is very well behaved.
- Lagrange: but evaluating the Lagrange interpolant is expensive (each basis function is of the same order and the interpolant is not easily reduced to nested form)

Given a polynomial

$$p(x) = -5 + 4x - 7x^2 + 2x^3 + 3x^4$$

we can write this as

$$p(x) = -5 + x(4 + x(-7 + x(2 + 3x)));$$

evaluation can be done from the inside-out, for cheap (nested evaluation). This polynomial can also be written as

$$p(x) = -5 + 2x - 4x(x-1) + 8x(x-1)(x+1) + 3x(x-1)(x+1)(x-2)$$

in nested form

$$p(x) = -5 + x(2 + (x - 1)(-4 + (x + 1)(8 + 3(x - 2))))$$

Newton Polynomials

Newton Polynomials are of the form

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \dots$$

• The basis used is thus

functionorder10
$$x - x_0$$
1 $(x - x_0)(x - x_1)$ 2 $(x - x_0)(x - x_1)(x - x_2)$ 3

- More stable that monomials
- More computationally efficient (nested iteration) than using Lagrange and shifted monomials

Consider the data

We want to find a_0 , a_1 , and a_2 in the following polynomial so that it fits the data:

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

Matching the data gives three equations to determine our three unknowns a_i :

at
$$x_0$$
: $y_0 = a_0 + 0 + 0$
at x_1 : $y_1 = a_0 + a_1(x_1 - x_0) + 0$
at x_2 : $y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$

Or in matrix form:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & x_1 - x_0 & 0 \\ 1 & x_2 - x_0 & (x_2 - x_0)(x_2 - x_1) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

 \Rightarrow lower triangular \Rightarrow only $O(n^2)$ operations

Question

How many operations are needed to find the coefficients in the monomial basis?

Using Forward Substitution to solve this lower triangular system yields:

$$a_{0} = y_{0} = f(x_{0})$$

$$a_{1} = \frac{y_{1} - a_{0}}{x_{1} - x_{0}}$$

$$= \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$a_{2} = \frac{y_{2} - a_{0} - (x_{2} - x_{0})a_{1}}{(x_{2} - x_{1})(x_{2} - x_{0})}$$

$$= \dots \text{ next slide}$$

From the previous slide ...

$$a_{2} = \frac{f(x_{2}) - f(x_{0}) - (x_{2} - x_{0})\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{(x_{2} - x_{1})(x_{2} - x_{0})}$$

$$= \frac{f(x_{2}) - f(x_{1}) + f(x_{1}) - f(x_{0}) - (x_{2} - x_{0})\frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{(x_{2} - x_{1})(x_{2} - x_{0})}$$

$$= \frac{f(x_{2}) - f(x_{1}) + (f(x_{1}) - f(x_{0}))\left(1 - \frac{x_{2} - x_{0}}{x_{1} - x_{0}}\right)}{(x_{2} - x_{1})(x_{2} - x_{0})}$$

$$= \frac{f(x_{2}) - f(x_{1}) + (f(x_{1}) - f(x_{0}))\left(\frac{x_{1} - x_{2}}{x_{1} - x_{0}}\right)}{(x_{2} - x_{1})(x_{2} - x_{0})}$$

$$= \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}}$$

<ロト <回ト < 回ト < 回

From this we see a pattern. There are many terms of the form

$$\frac{f(x_j) - f(x_i)}{x_j - x_i}$$

These are called *divided differences* and are denoted with square brackets:

$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}$$

Applying this to our results:

$$a_{0} = f[x_{0}]$$

$$a_{1} = f[x_{0}, x_{1}]$$

$$a_{2} = \frac{f[x_{1}, x_{2}] - f[x_{0}, x_{1}]}{x_{2} - x_{0}}$$

$$= f[x_{0}, x_{1}, x_{2}]$$

Example

For the data

Find the 2nd order interpolating polynomial using Newton.

We know

$$p_1(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

And that

$$\begin{aligned} a_0 &= f[x_0] = f[1] = f(1) = 3\\ a_1 &= f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{13 - 3}{-4 - 1} = -2\\ a_2 &= f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}\\ &= \frac{\frac{-23 - 13}{0 - 4} - \frac{13 - 3}{-4 - 1}}{0 - 1}\\ &= \frac{-9 + 2}{-1} = 7 \end{aligned}$$

So

$$p_1(x) = 3 - 2(x - 1) + 7(x - 1)(x + 4)$$

Image: A matrix

Recursive Property

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

With the first two defined by

$$f[x_i] = f(x_i)$$

$$f[x_i, x_j] = \frac{f[x_j] - f[x_i]}{x_j - x_i}$$

David Semeraro (NCSA)

 $\langle \Box \rangle \langle \Box \rangle$

- 4 E F

Invariance Theorem

 $f[x_0, \ldots, x_k]$ is invariant under all permutations of the arguments x_0, \ldots, x_k

Simple "proof": $f[x_0, x_1, ..., x_k]$ is the coefficient of the x^k term in the polynomial interpolating f at $x_0, ..., x_k$. But any permutation of the x_i still gives the same polynomial.

This says that we can also write

$$f[x_i, \dots, x_j] = \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j-1}]}{x_j - x_i}$$

イロト イポト イラト イラ

x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
x_0	$f[x_0]$			
	<i>c</i> 1	$f[x_0, x_1]$		
x_1	$f[x_1]$	C []	$f[x_0, x_1, x_2]$	CI 1
	£[.,]	$f[x_1, x_2]$	f[$f[x_0, x_1, x_2, x_3]$
x_2	$f[x_2]$	$f[x_0, x_0]$	$J[x_1, x_2, x_3]$	
<i>x</i> ₃	$f[x_3]$	$J[\lambda_2,\lambda_3]$	$f[x_0, x_1, x_2]$ $f[x_1, x_2, x_3]$	

x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
x_0	$f[x_0]$			$f[x_0, x_1, x_2, x_3]$
		$f[x_0, x_1]$		
x_1	$f[x_1]$	<i>ar</i> 3	$f[x_0, x_1, x_2]$	<i>a</i> t. 1
	C []	$f[x_1, x_2]$	cr 1	$f[x_0, x_1, x_2, x_3]$
x_2	$f[x_2]$		$f[x_1, x_2, x_3]$	
	C []	$f[x_2, x_3]$		
x_3	$J[x_3]$			

x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
x_0	$f[x_0]$			
	<i>c</i> 1	$f[x_0, x_1]$		
x_1	$f[x_1]$	C[]	$f[x_0, x_1, x_2]$	C []
	£[]	$f[x_1, x_2]$	<i>f</i> [$f[x_0, x_1, x_2, x_3]$
<i>x</i> ₂	$J[x_2]$	$f[x_0, x_0]$	$J[x_1, x_2, x_3]$	
<i>x</i> ₃	$f[x_3]$	$J[\lambda_2,\lambda_3]$	$f[x_0, x_1, x_2]$ $f[x_1, x_2, x_3]$	

x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
x_0	$f[x_0]$			$f[x_0, x_1, x_2, x_3]$
	45 3	$f[x_0, x_1]$	<i>a</i> r 3	
x_1	$f[x_1]$	<i>c</i> r 1	$f[x_0, x_1, x_2]$	<i>c</i> r 1
	65 1	$f[x_1, x_2]$	CT 1	$f[x_0, x_1, x_2, x_3]$
x_2	$f[x_2]$	CI 1	$f[x_1, x_2, x_3]$	
	C[]	$f[x_2, x_3]$		
x_3	$f[x_3]$			

x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
x_0	$f[x_0]$		$f[x_0, x_1, x_2]$ $f[x_1, x_2, x_3]$	
	<i>a</i> , , ,	$f[x_0, x_1]$	<i>a</i>	
x_1	$f[x_1]$	CT 1	$f[x_0, x_1, x_2]$	<i>c</i> r 1
	C[]	$f[x_1, x_2]$	CT 1	$f[x_0, x_1, x_2, x_3]$
x_2	$f[x_2]$	£[$f[x_1, x_2, x_3]$	
	£[]	$J[x_2, x_3]$		
x_3	$J[x_3]$			

the easy way: example

Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.

	x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot, \cdot, \cdot]$	$ f[\cdot, \cdot, \cdot, \cdot] $
-	1	3	1		
	$\frac{3}{2}$	$\frac{13}{4}$	$\frac{1}{2}$	$\frac{1}{3}$	-2
	0	3	6	$-\frac{5}{3}$	L
	2	<u>5</u> 3	$-\frac{2}{3}$		п
					●● シック 州 《山・《山・《四・《日・

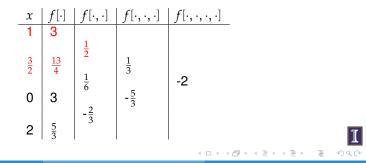
the easy way: example

Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.

We can compute the divided differences much more easily using tables. To construct the divided difference table for f(x) for the x_0, \ldots, x_3



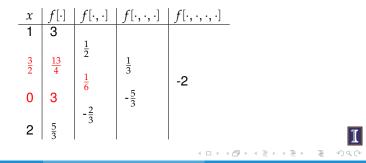
David Semeraro (NCSA)

the easy way: example

Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.



the easy way: example

Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.

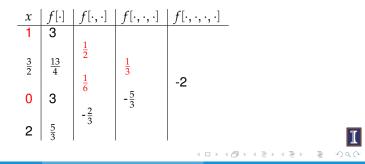
x	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot, \cdot, \cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$		
1	3	1			-	
$\frac{3}{2}$	$\frac{13}{4}$	$\frac{1}{2}$ $\frac{1}{6}$	$\frac{1}{3}$	-2		
0	3		$-\frac{5}{3}$			
2	$\frac{5}{3}$	$-\frac{2}{3}$				I

the easy way: example

Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.

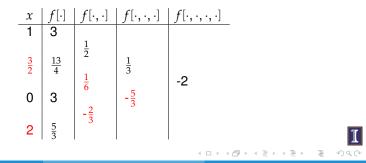


the easy way: example

Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.

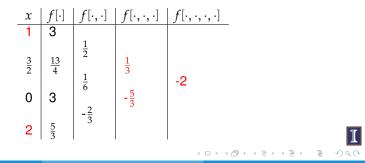


the easy way: example

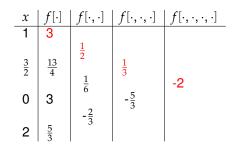
Construct the divided differences table for the data

x	1	$\frac{3}{2}$	0	2
y	3	$\frac{13}{4}$	3	$\frac{5}{3}$

and construct the largest order interpolating polynomial.



the easy way: example



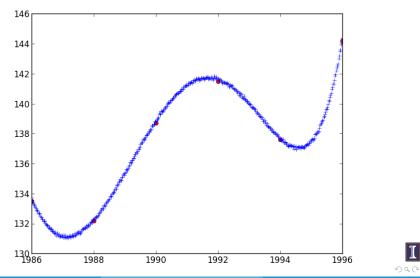
The coefficients are readily available and we arrive at

$$p_2(x) = 3 + \frac{1}{2}(x-1) + \frac{1}{3}(x-1)(x-\frac{3}{2}) - 2(x-1)(x-\frac{3}{2})x$$

Newton's polynomial for the gas price data in nested form is:

$$p(x) = 133.5 + (x - 1986)(-.65 + (x - 1988)(.975 + (x - 1990)(-.2396 + (x - 1992)(.0221 + .0030(x - 1994)))))$$

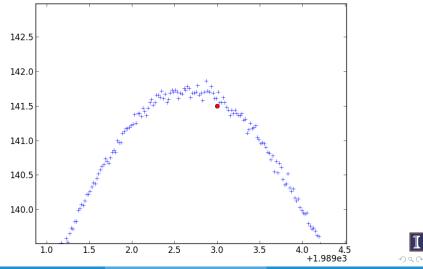
Vandermond system



David Semeraro (NCSA)

October 10, 2013 29 / 29

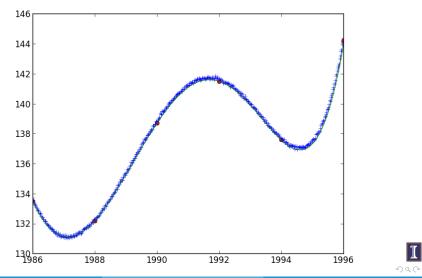
Vandermond system



October 10, 2013 30 / 29

I

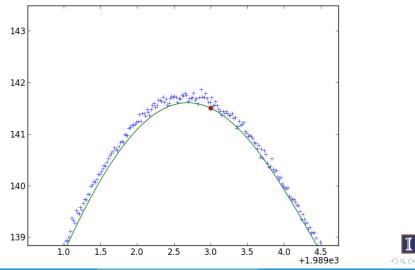
Newton polynomial



David Semeraro (NCSA)

October 10, 2013 31 / 29

Newton polynomial



I