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Next Topics

1 Interpolation: Approximating a function f (x) by a polynomial pn(x).
2 Differentiation: Approximating the derivative of a function f (x).
3 Integration: Approximating an integral

∫b
a f (x) dx
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Interpolation: Introduction

Objective
Approximate an unknown function f (x) by an easier function g(x), such as a
polynomial.

Objective (alt)
Approximate some data by a function g(x).

Types of approximating functions:
1 Polynomials
2 Piecewise polynomials
3 Rational functions
4 Trig functions
5 Others (inverse, exponential, Bessel, etc)
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Interpolation: Introduction

How do we approximate f (x) by g(x)? In what sense is the approximation a
good one?

1 Interpolation: g(x) must have the same values of f (x) at set of given
points.

2 Least-squares: g(x) must deviate as little as possible from f (x) in the
sense of a 2-norm: minimize

∫b
a |f (t) − g(t)|2 dt

3 Chebyshev: g(x) must deviate as little as possible from f (x) in the sense
of the ∞-norm: minimize maxt∈[a,b] |f (t) − g(t)|.
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Interpolation: Introduction

Given n + 1 distinct points x0, . . . , xn, and values y0, . . . , yn, find a polynomial
p(x) of degree n so that

p(xi) = yi i = 0, . . . , n

A polynomial of degree n has n + 1 degrees-of-freedom:

p(x) = a0 + a1x + · · ·+ anxn

n + 1 constraints determine the polynomial uniquely:

p(xi) = yi, i = 0, . . . , n

Theorem (page 128 6thEd)
If points x0, . . . , xn are distinct, then for arbitrary y0, . . . , yn, there is a unique
polynomial p(x) of degree at most n such that p(xi) = yi for i = 0, . . . , n.
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Monomials
Obvious attempt: try picking

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

So for each xi we have

p(xi) = a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi

OR

a0 + a1x0 + a2x2
0 + · · ·+ anxn

0 = y0

a0 + a1x1 + a2x2
1 + · · ·+ anxn

1 = y1

a0 + a1x2 + a2x2
2 + · · ·+ anxn

2 = y2

a0 + a1x3 + a2x2
3 + · · ·+ anxn

3 = y3

...

a0 + a1xn + a2x2
n + · · ·+ anxn

n = yn
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Monomial: The problem


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

...
1 xn x2

n . . . xn
n




a0
a1
a2
...

an

 =


y0
y1
y2
...

yn



Question
Is this a “good” system to solve?
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Example
from Recktenwald

Consider Gas prices (in cents) for the following years:
x year 1986 1988 1990 1992 1994 1996
y price 133.5 132.2 138.7 141.5 137.6 144.2

1 year =[1986 1988 1990 1992 1994 1996 ]’;

2 price=[133.5 132.2 138.7 141.5 137.6 144.2]’;

3

4 M = vander(year);

5 a = M\price;

6

7 x=linspace(1986,1996,200);

8 p=polyval(a,x);

9 plot(year,price,’o’,x,p,’-’);
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Back to the basics...

Example
Find the interpolating polynomial of least degree that interpolates

x 1.4 1.25
y 3.7 3.9

Directly

p1(x) =
(

x − 1.25
1.4 − 1.25

)
3.7 +

(
x − 1.4

1.25 − 1.4

)
3.9

= 3.7 +

(
3.9 − 3.7

1.25 − 1.4

)
(x − 1.4)

= 3.7 −
4
3
(x − 1.4)
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Lagrange

What have we done? We’ve written p(x) as

p(x) =
(

x − x1

x0 − x1

)
y0 +

(
x − x0

x1 − x0

)
y1

the sum of two linear polynomials
the first is zero at x1 and 1 at x0

the second is zero at x0 and 1 at x1

these are the two linear Lagrange basis functions:

`0(x) =
x − x1

x0 − x1
`1(x) =

x − x0

x1 − x0
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Lagrange

Example
Write the Lagrange basis functions for

x 1
3

1
4 1

y 2 -1 7

Directly

`0(x) =
(x − 1

4 )(x − 1)
( 1

3 − 1
4 )(

1
3 − 1)

`1(x) =
(x − 1

3 )(x − 1)
( 1

4 − 1
3 )(

1
4 − 1)

`2(x) =
(x − 1

3 )(x − 1
4 )

(1 − 1
3 )(1 − 1

4 )
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Lagrange

The general Lagrange form is

`k(x) =
n∏

i=0,i,k

x − xi

xk − xi

The resulting interpolating polynomial is

p(x) =
n∑

k=0

`k(x)yk
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Example
Find the equation of the parabola passing through the points (1,6), (-1,0), and
(2,12)

x0 = 1, x1 = −1, x2 = 2; y0 = 6, y1 = 0, y2 = 12;

`0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

= (x+1)(x−2)
(2)(−1)

`1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

= (x−1)(x−2)
(−2)(−3)

`2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

= (x−1)(x+1)
(1)(3)

p2(x) = y0`0(x) + y1`1(x) + y2`2(x)

= −3× (x + 1)(x − 2) + 0× 1
6
(x − 1)(x − 2)

+4× (x − 1)(x + 1)
= (x + 1)[4(x − 1) − 3(x − 2)]
= (x + 1)(x + 2)
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Summary so far:

Monomials: p(x) = a0 + a1x + · · ·+ anxn results in poor conditioning
Monomials: but evaluating the Monomial interpolant is cheap (nested
iteration)
Lagrange: p(x) = `0(x)y0 + · · ·+ `n(x)yn is very well behaved.
Lagrange: but evaluating the Lagrange interpolant is expensive (each
basis function is of the same order and the interpolant is not easily
reduced to nested form)
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Recall Nested Form

Given a polynomial

p(x) = −5 + 4x − 7x2 + 2x3 + 3x4

we can write this as

p(x) = −5 + x(4 + x(−7 + x(2 + 3x)));

evaluation can be done from the inside-out, for cheap (nested evaluation).
This polynomial can also be written as

p(x) = −5 + 2x − 4x(x − 1) + 8x(x − 1)(x + 1) + 3x(x − 1)(x + 1)(x − 2)

in nested form

p(x) = −5 + x(2 + (x − 1)(−4 + (x + 1)(8 + 3(x − 2))))
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Newton Polynomials

Newton Polynomials are of the form

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2) + . . .

The basis used is thus
function order
1 0
x − x0 1
(x − x0)(x − x1) 2
(x − x0)(x − x1)(x − x2) 3

More stable that monomials
More computationally efficient (nested iteration) than using Lagrange and
shifted monomials
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Newton Polynomials using Divided Differences

Consider the data

x0 x1 x2

y0 y1 y2

We want to find a0, a1, and a2 in the following polynomial so that it fits the data:

p2(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1)

Matching the data gives three equations to determine our three unknowns ai:

at x0: y0 = a0 + 0 + 0
at x1: y1 = a0 + a1(x1 − x0) + 0
at x2: y2 = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)
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Newton Polynomials using Divided Differences

Or in matrix form:1 0 0
1 x1 − x0 0
1 x2 − x0 (x2 − x0)(x2 − x1)

a0
a1
a2

y0
y1
y2


⇒ lower triangular
⇒ only O(n2) operations

Question
How many operations are needed to find the coefficients in the monomial
basis?
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Newton Polynomials using Divided Differences

Using Forward Substitution to solve this lower triangular system yields:

a0 = y0 = f (x0)

a1 =
y1 − a0

x1 − x0

=
f (x1) − f (x0)

x1 − x0

a2 =
y2 − a0 − (x2 − x0)a1

(x2 − x1)(x2 − x0)

= ... next slide
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Newton Polynomials using Divided Differences

From the previous slide . . .

a2 =
f (x2) − f (x0) − (x2 − x0)

f(x1)−f(x0)
x1−x0

(x2 − x1)(x2 − x0)

=
f (x2) − f (x1) + f (x1) − f (x0) − (x2 − x0)

f(x1)−f(x0)
x1−x0

(x2 − x1)(x2 − x0)

=
f (x2) − f (x1) + (f (x1) − f (x0))

(
1 − x2−x0

x1−x0

)
(x2 − x1)(x2 − x0)

=
f (x2) − f (x1) + (f (x1) − f (x0))

(
x1−x2
x1−x0

)
(x2 − x1)(x2 − x0)

=

f(x2)−f(x1)
x2−x1

−
f(x1)−f(x0)

x1−x0

x2 − x0
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Newton Polynomials using Divided Differences
From this we see a pattern. There are many terms of the form

f (xj) − f (xi)

xj − xi

These are called divided differences and are denoted with square brackets:

f [xi, xj] =
f (xj) − f (xi)

xj − xi

Applying this to our results:

a0 = f [x0]

a1 = f [x0, x1]

a2 =
f [x1, x2] − f [x0, x1]

x2 − x0

= f [x0, x1, x2]
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Newton Polynomials using Divided Differences
example: long way

Example
For the data

x 1 -4 0
y 3 13 -23

Find the 2nd order interpolating polynomial using Newton.

We know
p1(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1)

And that

a0 = f [x0] = f [1] = f (1) = 3

a1 = f [x0, x1] =
f (x1) − f (x0)

x1 − x0
=

13 − 3
−4 − 1

= −2

a2 = f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0

=
−23−13

0−−4 − 13−3
−4−1

0 − 1

=
−9 + 2
−1

= 7

So
p1(x) = 3 − 2(x − 1) + 7(x − 1)(x + 4)
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Divided Differences

Recursive Property

f [x0, . . . , xk] =
f [x1, . . . , xk] − f [x0, . . . , xk−1]

xk − x0

With the first two defined by

f [xi] = f (xi)

f [xi, xj] =
f [xj] − f [xi]

xj − xi
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Divided Differences

Invariance Theorem
f [x0, . . . , xk] is invariant under all permutations of the arguments x0, . . . , xk

Simple “proof”: f [x0, x1, ..., xk] is the coefficient of the xk term in the polynomial
interpolating f at x0, . . . , xk. But any permutation of the xi still gives the same
polynomial.
This says that we can also write

f [xi, . . . , xj] =
f [xi+1, . . . , xj] − f [xi, . . . , xj−1]

xj − xi
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Divided Differences
the easy way: tables

We can compute the divided differences much easier using tables. To
construct the divided difference table for f (x) for the x0, . . . , x3

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

f [x2, x3]
x3 f [x3]
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Divided Differences
the easy way: example

Construct the divided differences table for the data

x 1 3
2 0 2

y 3 13
4 3 5

3

and construct the largest order interpolating polynomial.
We can compute the divided differences much more easily using tables. To
construct the divided difference table for f (x) for the x0, . . . , x3

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
1 3

1
2

3
2

13
4

1
3

1
6 -2

0 3 - 5
3

- 2
3

2 5
3
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Divided Differences
the easy way: example

x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
1 3

1
2

3
2

13
4

1
3

1
6 -2

0 3 - 5
3

- 2
3

2 5
3

The coefficients are readily available and we arrive at

p2(x) = 3 +
1
2
(x − 1) +

1
3
(x − 1)(x −

3
2
) − 2(x − 1)(x −

3
2
)x
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gas prices again

Newton’s polynomial for the gas price data in nested form is:

p(x) = 133.5 + (x − 1986)(−.65 + (x − 1988)(.975 + (x − 1990)(−.2396+

(x − 1992)(.0221 + .0030(x − 1994)))))
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Vandermond system
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Vandermond system
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Newton polynomial
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Newton polynomial
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