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Recall

Given n + 1 distinct points x0, . . . , xn, and values y0, . . . , yn, there exists a
unique polynomial p(x) of degree at most n so that

p(xi) = yi i = 0, . . . , n
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Recall: Monomials
Obvious attempt: try picking

p(x) = a0 + a1x + a2x2 + · · ·+ anxn

So for each xi we have

p(xi) = a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi

OR 
1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

1 xn x2
n . . . xn

n




a0
a1
...

an

 =


y0
y1
...

yn


That is,

a = M−1y

Very bad matrix: terribly ill-conditioned, inverse entries are large
Very bad evaluation: values are huge
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Recall: Shifted Monomials

Evaluating
p(x) = a0 + a1x + a2x2 + · · ·+ anxn

may have huge values. Partial fix:

p(x) = a0 + a1(x − x̄) + a2(x − x̄)2 + · · ·+ an(x − x̄)n

Then M = vander(x − x̄) and
a = M−1y

Still, a very bad matrix.
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Recall: Lagrange

The general Lagrange form is

`k(x) =
n∏

i=0,i,k

x − xi

xk − xi

The resulting interpolating polynomial is

p(x) =
n∑

k=0

`k(x)yk
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Example

Find the equation of a quadratic passing through the points (0,-1), (1,-1), and
(2,7).

x0 = 0, x1 = 1, x2 = 2 y0 = −1, y1 = −1, y2 = 7

1 Form the Lagrange basis functions, `i(x) with `i(xj) = δij

2 Combine the Lagrange basis functions

p2(x) = y0`0(x) + y1`1(x) + y2`2(x)

= (−1)
(x − 1)(x − 2)

2
+ (−1)

x(x − 2)
−1

+ (7)
x(x − 1)

2

Evaluate is nice, but expensive: no easy nested form.
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Recall: Newton Polynomials

Newton Polynomials are of the form

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2) + . . .

The basis used is thus
function order
1 0
x − x0 1
(x − x0)(x − x1) 2
(x − x0)(x − x1)(x − x2) 3

More stable evaluation than monomials
More computationally efficient (nested iteration) than using Lagrange
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How bad is polynomial interpolation?

Let’s take something very smooth function

How does interpolation behave?
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Some analysis...
what can we say about

e(t) = f (t) − pn(t)
at some point x? Consider p = 1: linear interpolation of a function at x = x0, x1

want: error at x, e(x)
look at

g(t) = e(t) −
(t − x0)(t − x1)

(x − x0)(x − x1)
e(x)

g(t) is 0 at t = x0, x1, x
so g ′(t) is zero at two points
so g ′′(t) is zero at one point, call it c
then

0 = g ′′(c) = e ′′(t) − 2
e(x)

(x − x0)(x − x1)

= f ′′(t) − 2
e(x)

(x − x0)(x − x1)

e(x) =
(x − x0)(x − x1)

2
f ′′(c)
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Theorem: Interpolation Error I
If pn(x) is the (at most) n degree polynomial interpolating f (x) at n + 1 distinct
points and if f (n+1) is continuous, then

e(x) = f (x) − pn(x) =
1

(n + 1)!
f (n+1)(c)

n∏
i=0

(x − xi)

Theorem: Bounding Lemma
Suppose xi are equispaced in [a, b] for i = 0, . . . , n. Then

n∏
i=0

|x − xi| 6
hn+1

4
n!

Theorem: Interpolation Error II
Let |f (n+1)(x)| 6 M, then with the above,

|f (x) − pn(x)| 6
Mhn+1

4(n + 1)
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Fixes

We have two options:
1 move the nodes: Chebychev nodes
2 piecewise polynomials (splines)

Option #1: Chebychev nodes in [−1, 1]

xi = cos(π
2i + 1
2n + 2

), i = 0, . . . , n

Option #2: piecewise polynomials...
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Chebychev Nodes

Can obtain nodes from equidistant points on a circle projected down
Nodes are non uniform and non nested
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Chebychev Nodes

High degree polynomials using equispaced points suffer from many
oscillations

Points are bunched at the ends of the interval
Error is distributed more evenly
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Why Splines?

truetype fonts, postscript,
metafonts
graphics surfaces
smooth surfaces are needed
how do we interpolate
smoothly a set of data?
keywords: Bezier Curves,
splines, B-splines, NURBS
basic tool: piecewise
interpolation

David Semeraro (NCSA) CS 357 October 15, 2013 14 / 39



Piecewise Polynomial
A function f (x) is considered a piecewise polynomial on [a, b] if there exists a
(finite) partition P of [a, b] such that f (x) is a polynomial on each [ti, ti+1] ∈ P.

Example

f (x) =


x3 x ∈ [0, 1]
x x ∈ (1, 2)
3 x ∈ [2, 3]
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What do we want?

we would like the piecewise polynomial to do two things
1 interpolate (or be close to) some set of data points
2 look nice (smooth)

one option is called a spline
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splines

A spline is a piecewise polynomial with a certain level of smoothness.
take Matlab: plot(1:7,rand(7,1))
this is linear and continuous, but not very smooth
the function changes behavior at knots t0, . . . , tn
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degree 1 spline

definition
A function S(x) is a spline of degree 1 if:

1 The domain of S(x) is an interval [a, b]
2 S(x) is continuous on [a, b]
3 There is a partition a = t0 < t1 < · · · < tn = b such that S(x) is linear on

each subinterval [ti, ti+1].

Example

S(x) =


x x ∈ [−1, 0]
1 x ∈ (0, 1)
2x − 2 x ∈ [1, 2]
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degree 1 spline

Given data t0, . . . , tn and y0, . . . , yn, how do we form a spline?

We need two things to hold in the interval [a, b] = [t0, tn]:
1 S(ti) = yi for i = 0, . . . , n
2 Si(x) = aix + bi for i = 0, . . . , n

Write Si(x) in point-slope form

Si(x) = yi + mi(x − ti)

= yi +
yi+1 − yi

ti+1 − ti
(x − ti)

Done.
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degree 1 spline

1 input t, y vectors of data
2 input evaluation location x
3 find interval i with x ∈ [ti, ti+1]
4 S = y_i + (x-t_i) m_i
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degree 1 spline

Interesting:
input n + 1 data points t0, . . . , tn,y0, . . . , yn

in each interval we have Si(x) = aix + bi

2 unknowns per interval [ti, ti+1]

or 2n total unknowns
the n + 1 pieces of input contraints S(ti) = yi gives 2 constraints per
interval
or 2n total constraints
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degree 2 splines

definition
A function S(x) is a spline of degree 2 if:

1 The domain of S(x) is an interval [a, b]
2 S(x) is continuous on [a, b]
3 S ′(x) is continuous on [a, b]
4 There is a partition a = t0 < t1 < · · · < tn = b such that S(x) is quadratic

on each subinterval [ti, ti+1].
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degree 2 splines

S(x) =


S0(x) x ∈ [t0, t1]

S1(x) x ∈ [t1, t2]
...

...
Sn−1(x) x ∈ [tn−1, tn]

for each i we have
Si(x) = aix2 + bix + ci

What are ai, bi, ci?
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degree 2 splines

3 unknowns in each interval
3n total unknowns
2n constraints for matching up the input data (2 per interval)
n − 1 interior points require continuity of the derivative:
S ′

i (xi+1) = S ′
i+1(xi+1)

but this is just n − 1 constraints
total of 3n − 1 constraints
extra consraint: S ′(x0) =given, for example.
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degree 3 spline: cubic spline

definition
A function S(x) is a spline of degree 3 if:

1 The domain of S(x) is an interval [a, b]
2 S(x) is continuous on [a, b]
3 S ′(x) is continuous on [a, b]
4 S ′′(x) is continuous on [a, b]
5 There is a partition a = t0 < t1 < · · · < tn = b such that S(x) is cubic on

each subinterval [ti, ti+1].
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degree 3 spline: cubic spline

In each intervale [ti, ti+1], S(x) looks like

Si(x) = a0,i + a1,ix + a2,ix2 + a3,ix3

n intervals, n + 1 knots, 4 unknowns per interval
4n unknowns

2n constraints by continuity
n − 1 constraints by continuity of S ′(x)
n − 1 constraints by continuity of S ′′(x)
4n − 2 total constraints
This leaves 2 extra degrees of freedom. The cubic spline is not yet
unique!
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degree 3 spline: cubic spline

Some options:
natural cubic spline: S ′′(t0) = S ′′(tn) = 0
fixed-slope: S ′(t0) = a, S ′(tn) = b
not-a-knot: S ′′′(x) continuous at t1 and tn−1

periodic: S ′ and S ′′ are periodic at the ends
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natural cubic spline

How do we find a0,i, a1,i, a2,i, a3,i for each i? Consider knots t0, . . . , tn. Follow our

example with the following steps:
1 Assume we knew S ′′(ti) for each i
2 S ′′

i (x) is linear, so construct it
3 Get Si(x) by integrating S ′′

i (x) twice
4 Impose continuity
5 Differentiate Si(x) to impose continuity on S ′(x)
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natural cubic spline: Step 1
Assume we knew S ′′(ti) for each i

We know S ′′(x) is continuous. So assume

zi = S ′′(ti)

(we don’t actually know zi, not yet at least)
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natural cubic spline: Step 2
S ′′

i (x) is linear, so construct it

Since S ′′
i (x) is linear, and

S ′′
i (ti) = zi

S ′′
i (ti+1) = zi+1

we can write S ′′
i (x) as

S ′′
i (x) = zi

ti+1 − x
ti+1 − ti

+ zi+1
x − ti

ti+1 − ti

=
zi

hi
(ti+1 − x) +

zi+1

hi
(x − ti)
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natural cubic spline: Step 3
Get Si(x) by integrating S ′′

i (x) twice

Take
S ′′

i (x) =
zi

hi
(ti+1 − x) +

zi+1

hi
(x − ti)

and integrate once:

S ′
i (x) = −

zi

2hi
(ti+1 − x)2 +

zi+1

2hi
(x − ti)

2 + Ĉi

twice:
Si(x) =

zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x − ti)

3 + Ĉix + D̂i

adjust:

Si(x) =
zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x − ti)

3 + Ci(x − ti) + Di(ti+1 − x)
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natural cubic spline: Step 4
Impose continuity

For each interval [ti, ti+1], we require Si(ti) = yi and Si(ti+1) = yi+1:

yi = Si(ti) =
zi

6hi
(ti+1 − ti)

3 +
zi+1

6hi
(ti − ti)

3 + Ci(ti − ti) + Di(ti+1 − ti)

=
zi

6
h2

i + Dihi

Di =
yi

hi
−

hi

6
zi

and

yi+1 = Si(ti+1) =
zi

6hi
(ti+1 − ti+1)

3 +
zi+1

6hi
(ti+1 − ti)

3 + Ci(ti+1 − ti) + Di(ti+1 − ti+1)

=
zi+1

6
(hi)

2 + Cihi

Ci =
yi+1

hi
−

hi

6
zi+1
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natural cubic spline: Step 4
Impose continuity

So far we have

Si(x) =
zi

6hi
(ti+1−x)3+

zi+1

6hi
(x−ti)

3+

(
yi+1

hi
−

hi

6
zi+1

)
(x−ti)+

(
yi

hi
−

hi

6
zi

)
(ti+1−x)
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natural cubic spline: Step 5
Differentiate Si(x) to impose continuity on S ′(x)

S ′
i (x) = −

zi

2hi
(ti+1 − x)2 +

zi+1

2hi
(x − ti)

2 +
yi+1

hi
−

hi

6
zi+1 −

yi

hi
+

hi

6
zi

We need S ′
i (ti) = S ′

i−1(ti):

S ′
i (ti) = −

hi

6
zi+1 −

hi

3
zi +

1
hi
(yi+1 − yi)︸            ︷︷            ︸

bi

S ′
i−1(ti) =

hi−1

6
zi−1 +

hi−1

3
zi +

1
hi−1

(yi − yi−1)︸               ︷︷               ︸
bi−1

Thus zi is defined by

hi−1zi−1 + 2(hi + hi−1)zi + hizi+1 = 6(bi − bi−1)
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natural cubic spline: Step 6
solve

zi is defined by

hi−1zi−1 + 2(hi + hi−1)zi + hizi+1 = 6(bi − bi−1)

This is n − 1 equations, n − 1 unknowns (z0 = zn = 0 already)
an (n − 1)× (n − 1) tridiagonal system

1
h0 u1 h1

h1 u2 h2
h2 u3 h3

. . . . . . . . .
hn−3 un−2 hn−2

hn−2 un−1 hn−1
1





z0
z1
z2
z3
...

zn−2
zn−1
zn


=



0
v1
v2
v3
...

vn−2
vn−1

0


ui = 2(hi + hi−1)

vi = 6(bi − bi−1)
David Semeraro (NCSA) CS 357 October 15, 2013 35 / 39



example

Find the natural cubic spline for
x -1 0 1
y 1 2 -1

1 Determine hi, bi, ui, vi

h =

[
1
1

]
b =

[
1
−3

]
u =

[
4
]

v =
[
−24

]
2 Solve 1

1 4 1
1

z0
z1
z2

 =

 0
−24

0


3 Result: z0

z1
z2

 =

 0
−6
0
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example

Find the natural cubic spline for
x -1 0 1
y 1 2 -1

1 Plug zi into

Si(x) =
zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x − ti)

3 +

(
yi+1

hi
−

hi

6
zi+1

)
(x − ti)

+

(
yi

hi
−

hi

6
zi

)
(ti+1 − x)

S(x) =

{
−(x + 1)3 + 3(x + 1) − x −1 6 x < 0
−(1 − x)3 − x + 3(1 − x) 0 6 x < 1

David Semeraro (NCSA) CS 357 October 15, 2013 37 / 39



Algorithm: page 391 NMC6 (page 403, NMC5)

1 Compute for i = 0, . . . , n − 1

hi = ti+1 − ti bi =
1
hi
(yi+1 − yi)

2 Set u, v:
3 tridiagonal solve to get z
4 substitute into the nested form for S(x) equation 12, page 392 NMC6

(NMC5: equation 10 page 404)
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Next time...

more on the cubic algorithm
the B-splines/Bezier Curves
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