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Given n + 1 distinct points xo,

., Xy, and values vy, . . ., y», there exists a
unique polynomial p(x) of degree at most n so that
plxi) =y i=0,.

.,n
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~ DavidSemeraro (NCSA)  csas7  October152013 2/39



Obvious attempt: try picking

plx) =ao + Mx + ax% + - + a,x"
So for each x; we have

p(xi) = ag + arx; + ax} + -+ ax} = y;

OR

1 x x3 xg] [ao Yo

1 x x x| m 1

1 x, x2 x| |ay, .
That is,

a=M"1y

Very bad matrix: terribly ill-conditioned, inverse entries are large
Very bad evaluation: values are huge O <@ =, = 9ac



Evaluating
p(x) = ap + a1 x 4+ apx* + - - - + a,x"
may have huge values. Partial fix:

p(x) =ap+ai(x —X) +ay(x —X)* + - +a,(x—x)"
Then M = vander(x — x) and

a=M"1y
Still, a very bad matrix.
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The general Lagrange form is

o= I X5

=0,k Tk X
The resulting interpolating polynomial is

px) =) (x)ye
k=0

=} = = AP N G4
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Find the equation of a quadratic passing through the points (0,-1), (1,-1), and
(2,7).

X=0x=1x=2 Yo=—1lLyn=-11p=7

@ Form the Lagrange basis functions, ¢;(x) with £;(x;) = &;
@ Combine the Lagrange basis functions

p2(x) = yolo(x) + yili(x) + yolo(x)

(x—1)(x—2) x(x —2) x(x—1)
= ()R R e (T

Evaluate is nice, but expensive: no easy nested form.



@ Newton Polynomials are of the form

Pu(x) =ag +a1(x —xo) +az(x —xo) (x — x1) +az(x —xo) (x —x1) (x —x2) + ...

@ The basis used is thus

function order
1 0
X — Xp 1
(x —x0)(x — x1) 2
(x—x0)(x —x1)(x—x2) 3

@ More stable evaluation than monomials
@ More computationally efficient (nested iteration) than using Lagrange
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Let’s take something very smooth function

How does interpolation behave?

N
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what can we say about

e(t) =f(t) — pa(t)
at some point x? Consider p = 1: linear interpolation of a function at x = xy, x
@ want: error at x, e(x)
@ look at (t (¢ )
— X))\ —X1
g(t) =e(t) — me(x)
@ g(t)isOatt=uxp,x1,x
@ s0 g’(t) is zero at two points

@ so ¢ (t) is zero at one point, call it ¢
@ then



If p,(x) is the (at most) n degree polynomial interpolating f(x) at n + 1 distinct
points and if f**1) is continuous, then

n

@ ] Jo—x)

i=0

Suppose x; are equispaced in [a,b] fori =0,...,n. Then

e(x) =f(x) —pulx) =

(n+1)

© n+1

Hlx—xi|<h n!
4

i=0

Let [f"+1) (x)| < M, then with the above,

Mhn+1
4(n+1)

[f (x) = pa(x)] <




We have two options:
@ move the nodes: Chebychev nodes
@ piecewise polynomials (splines)

Option #1: Chebychev nodes in [-1, 1]

2i+1
X; = cos(Tt
2n

i =0,.
+2), i=0,

Option #2: piecewise polynomials...

=y = Ha e
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@ Can obtain nodes from equidistant points on a circle projected down
@ Nodes are non uniform and non nested
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High degree polynomials using equispaced points suffer from many

oscillations

@ Points are bunched at the ends of the interval
@ Error is distributed more evenly




@ truetype fonts, postscript,
metafonts

@ graphics surfaces
@ smooth surfaces are needed

@ how do we interpolate
smoothly a set of data?

@ keywords: Bezier Curves,
splines, B-splines, NURBS

@ basic tool: piecewise
interpolation




A function f(x) is considered a piecewise polynomial on [a, b] if there exists a
(finite) partition P of [a, b] such that f(x) is a polynomial on each [, t;1] € P.




@ we would like the piecewise polynomial to do two things
@ look nice (smooth)

@ interpolate (or be close to) some set of data points
@ one option is called a spline
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@ A spline is a piecewise polynomial with a certain level of smoothness.
@ take Matlab: plot(1:7,rand(7,1))

@ this is linear and continuous, but not very smooth

@ the function changes behavior at knots tg, ..., t,




A function S(x) is a spline of degree 1 if:
@ The domain of S(x) is an interval [a, b]
@ S(x) is continuous on [a, b]

© There is a partitiona =ty < t; < --- < t, = b such that S(x) is linear on
each subinterval [t;, t;11].

X x € [-1,0]
S(x) =<1 x € (0,1)
2x—2 x¢€[1,2]




Given data ¢,

., t, and yo,

, Yn, how do we form a spline?
We need two things to hold in the interval [a, b] = [fo, t,]:
0 S(ti) :yifori:O Lo, n
Q Si(x)=ax+bifori=0,...,n
Write S;(x) in point-slope form

Si(x) =yi +mi(x — t;)
—y+ LY yz+l Yi (
Done.

X —t
tin —t d
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input f,y vectors of data
input evaluation location x
find interval i with x € [#,ti 1]
S = y_i + (x-t_i) m_i
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Interesting:

input n + 1 data points fg, ..., t.,Y0, - - - s Yn
in each interval we have S;(x) = a;x + b;
2 unknowns per interval [t;, t; 1]

or 2n total unknowns

the n + 1 pieces of input contraints S(t;) = y; gives 2 constraints per
interval

or 2n total constraints



A function S(x) is a spline of degree 2 if:
@ The domain of S(x) is an interval [a, b]
@ S(x) is continuous on [a, b]
© S’(x) is continuous on [a, b]

© There is a partitiona =ty < t; < --- < t, = b such that S(x) is quadratic
on each subinterval [¢;, ;. 1].




So(x) x € [to, 1]
Sq(x) x € [t, ]
S(x)=<. .
Sn—1(x)  x € [ty—1, t]
for each i we have

Si(x) = aixz +bix+¢i
What are g;, b;, ¢;?

o = = Ay
~ DavidSemeraro (NCSAY  csas7 " October152013  23/39



3 unknowns in each interval
3n total unknowns

2n constraints for matching up the input data (2 per interval)
n — 1 interior points require continuity of the derivative:
Sil(xi+1) = Sil+1(xi+1)

but this is just n — 1 constraints

total of 3n — 1 constraints

extra consraint: S’(xy) =given, for example.




A function S(x) is a spline of degree 3 if:
@ The domain of S(x) is an interval [a, b]
@ S(x) is continuous on [a, b]

@ S/(x) is continuous on [a, b]
© S’ (x) is continuous on [a, b]

@ There is a partitiona =ty < t; < --- < t, = b such that S(x) is cubic on
each subinterval [t;, t;1].




In each intervale [t;, t;11], S(x) looks like

Si(x) =ap;+a1x + az,ixz +azx

@ 4n unknowns

3
@ n intervals, n + 1 knots, 4 unknowns per interval
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In each intervale [t;, t;11], S(x) looks like

Si(x) = ag,; + ayx 4 apx® + az x>

@ n intervals, n + 1 knots, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity

=} = = AP N G4
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In each intervale [t;, t;11], S(x) looks like

Si(x) = ag,; + ayx 4 apx® + az x>

@ n intervals, n + 1 knots, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity

@ n — 1 constraints by continuity of S’(x)



In each intervale [t;, t;11], S(x) looks like

Si(x) = ag,; + ayx 4 apx® + az x>

@ n intervals, n + 1 knots, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity

@ n — 1 constraints by continuity of S’(x)

@ n — 1 constraints by continuity of S”(x)



In each intervale [t;, t;11], S(x) looks like

Si(x) = ag; + ayx + a2, X% + az x

n intervals, n + 1 knots, 4 unknowns per interval
4n unknowns

2n constraints by continuity

n — 1 constraints by continuity of S’(x)

n — 1 constraints by continuity of S”(x)

4n — 2 total constraints

3



In each intervale [t;, t;11], S(x) looks like

Si(x) = ag,; + ayx 4 apx® + az x>

@ n intervals, n + 1 knots, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity

@ n — 1 constraints by continuity of S’(x)

@ n — 1 constraints by continuity of S”(x)

@ 4n — 2 total constraints

)

This leaves 2 extra degrees of freedom. The cubic spline is not yet
unique!



Some options:

@ natural cubic spline: S”(fg) = S”(t,) =0
@ fixed-slope: S’ (tg) =a, S'(t,) =b

@ not-a-knot: S”’(x) continuous at t; and t,_4

@ periodic: S’ and S” are periodic at the ends

=} = = AP N G4
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How do we find ay;, a1, 42, a3, for each i? Consider knots f, ..., t,. Follow our

example with the following steps:
@ Assume we knew S”(¢;) for each i
@ S/ (x) is linear, so construct it
Q Get S;(x) by integrating S/ (x) twice
© Impose continuity
@ Differentiate S;(x) to impose continuity on S’(x)



We know S”(x) is continuous. So assume

z; = S"(t;)
(we don’t actually know z;, not yet at least)

Da0



Since S/’ (x) is linear, and

Si'(t) =z
Sill(tiﬂ) =Zit1
we can write S/'(x) as

tiig—x x—t
S/ (x) = zi-— +z;
s t—t g —
Zi Zi
= (i —x) + =5
i

I (x —t;)

=} = = AP N G4
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Take

V4 Zit1
Si/,(x) = h_zi(ti—o—l - x) + %(x - tl)
and integrate once
5!(x) = —o-
twice:

adjust:

i ilti
o & = DA




For each interval [t;, t;11], we require S;(t;)
vi = Si(ti) =

and

Vi1 = Si(tiq) =

= 2 )+ Cily
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Zj 3, Zi+l
U — t
6]11'( i+1 z) + — 6]’[
h? + Dih
hiz«
6 1
Zj z
6h (i1 — i)+ 61_;;:(’5#1 -

(i —

yi and S;(ti1)

= VYit1:
t)? 4+ Ci(t; — ;) + Diltia
ti)® + Ciltiy1 — i) + Di(tiss

—t;)

— tiy1)

Q>



So far we have

2
Si(x) = 6_;;(ti+1_x)3+

Zit1

6h;

o = - = =

3, [ Vi1
(x—t) +< I

6

h;

Zi+1> (x—t;)+ (ﬂ - EZ:‘) (ti1—x)

hi 6

Da0



We need S!(t) =S! ,(t)

h; h; 1
Sl-l(ti) = ngH_l — EIZ,' + F(}/Hl _yi)
-
b;
hi_ hi_
S/ (k)= 712,;1 + lei +

o (yi —yi—1)
Thus z; is defined by

—_—

bi 1

hi—1zi—1 4 2(hi + hi—1)zi + hiziv1 = 6(b; — bi_1)
o <& =, «z» T 9ao
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z; is defined by

hi—1zi—1 4 2(hi + hi—1)zi + hiziv1 = 6(b; — bi_1)

@ This is n — 1 equations, n — 1 unknowns (zy = z,, = 0 already)
@ an (n—1) x (n—1) tridiagonal system

1 1T zo ] [0 7
ho w 21 01
hl Up hz Zy (%]
hy us  hs 3 03
hy 3 up—2 hy Zp—2 Op—2
oo up1 hyp1| |Zn On—1
i 1 ]|z | | 0 |
Ui 2(hi +hi—1)
0j 6(b, —bl_1) o =3 = = E 9ace



Find the natural cubic spline for

0 Determine hi, bi, Uj, U;

=[] -

@ Solve

1 Zo
1 4 1| |zn
1 22
@ Result:
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Find the natural cubic spline for

x[1 0 1
y|1 2 -1
@ Plug z into
z Z; h;
S0 = gt —xP o+ Z2 -+ (B2 B ) o)
+ (%l - 6IZ,> (tiy1—x)
—(x+1P+3x+1)—x —-1<x<0
S(x) = 3
—(1—x)>—x+4+3(1—x)

0<x<1
o = = DA
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@ Computefori=0,...,n—1

1
hi =ti1—t bi = F(yi“ — i)
Q Setu, v

@ tridiagonal solve to get z

© substitute into the nested form for S(x) equation 12, page 392 NMC6
(NMC5: equation 10 page 404)



@ more on the cubic algorithm
@ the B-splines/Bezier Curves
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