David Semeraro

University of lllinois at Urbana-Champaign

September 26, 2013

Latent semantic analysis (LSA) analyzes two-mode data. Looks at
relationships between documents and terms.

@ natural language processing
@ information retrieval

@ information filtering
@ textual machine learning

Document-term matrix: Document1(D1) = "I love numerical analysis”
Document1(D2) = "I do not love numerical analysis, but | love linear algebra.”

| | love | numerical | linear | algebra
D1 |1 1 1 0 0
D2 | 1 2 1 1 1

it
kN
€

| | love | numerical | linear | algebra
D1 |1 1 1 0 0
D2 | 1 2 1 1 1

One method for weights: Term Count Model

Variation: Term Frequency-Inverse Document Frequency; weight the entries
inversely, highlighting infrequent terms

Let X be the matrix of occurrences (or the inverse).

X101 e X1,n
X =
Xma1l - Xm,n
Now each row will be a vector relating a term to all documents. Each column
will be a vector relating a document to all terms.
o = = z E 9Dac

X1,1 - X1,n

Xm1l -+ Xmn

@ X has many zeros

@ a dot product of the rows gives the correlation between terms over the
documents

@ XXT gives a cumulative view of the correlation
@ same with XTX

@ singular value decompositions, eigenvalue analysis, etc give other
information

@ Vague definition: matrix with few nonzero entries

column

@ This means roughly a constant number of nonzero entries per row and
= = = z E >
~ DavidSemeraro (NCSAY csas7 September26,2013 5/38

@ For all practical purposes: an m x n matrix is sparse if it has
O(min (m,n)) nonzero entries.

@ Other definitions use a slow growth of nonzero entries with respect to n or
m.

@ Wilkinson’s Definition: “..matrices that allow special techniques to take
advantage of the large number of zero elements.” (J. Wilkinson)”

@ A few applications which lead to sparse matrices: Structural Engineering,
Computational Fluid Dynamics, Reservoir simulation, Electrical

Networks, optimization, data analysis, information retrieval (LSI), circuit
simulation, device simulation, ...

u]
o)
I
ul
it
<
¢

@ To perform standard matrix computations economically i.e., without
storing the zeros of the matrix.

@ For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

To add two square dense matrices of size n requires O(n?) operations. To add
two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) =
number of nonzero elements of a matrix X.

A~'is usually dense, but L and U in the LU factorization may be reasonably
sparse (if a good technique is used).

4

@ Principle goal: solve

I
S

where A € R"*", x,b € R"
@ Assumption: A is very sparse
@ General approach: iteratively improve the solution

@ Given xg, ultimate “correction” is

X1 =Xg + €9
where ey = x — xg, thus Aeg = Ax — Axy,
@ or

X1 =Xo + A_lro
where rg = b — Axy

iteration?

@ Principle difficulty: how do we “approximate” A~'r or reformulate the
@ One simple idea:

X1 = Xo + &rg
@ operation is inexpensive if ry is inexpensive

@ requires very fast sparse mat-vec (matrix-vector multiply) Ax

@ So how do we store A?

@ Fast mat-vec is certainly important; also ask
» what type of access (rows, cols, diag, etc)?
» dynamic allocation?
> transpose needed?
» inherent structure?

@ Unlike dense methods, not a lot of standards for iterative
~ dense BLAS have been long accepted
» sparse BLAS still iterating

@ Even data structures for dense storage not as obvious

@ Sparse operations have low operation/memory reference ratio

u]
o)
I
ul
it
)
¥l
)
p)

Matrix Market attempts to classify the sparse matrix.
First Qualification (type of values and number of values):

identifier description

Real All entries are float

Complex All entries are a pair of float

Integer All entries are int

Pattern Matrix is a pattern. Actual entries are omitted
Parallel Parallel structure is identified

Second Qualification (interpreting values):

identifier description

General A has no symmetry, no symmetry is utilized,
or A is not square

Symmetric a;; = aj;; only entries on the diagonal

and below(or above) are stored.
Skew-Symmetric a;; = —a;;; only entries below (or above)
the diagonal (= 0) are stored.
Hermitian a;; = aj;; only entries on the diagonal
and below (or above) are stored.

see “The Matrix Market Exchange Formats: Initial Design” by Boisvert, Pozo, Remington

DNS
BND
(e0]0)
CSR
CsC
MSR
LIL

Dense

Linpack Banded

Coordinate

Compressed Sparse Row
Compressed Sparse Column
Modified CSR

Linked List

ELL
DIA

BSR
SSK
BSR
JAD

Ellpack-Itpack
Diagonal

Block Sparse Row
Symmetric Skyline
Nonsymmetric Skyline
Jagged Diagonal

note: CSR = CRS, CCS = CSC, SSK = SKS in some references

1.0 2.0 3.0
A:

4.0 50 6.0
70 8.0 9.0

AA=1[3 3 10 20 3.0 40 50 60 7.0 80 9.0
@ simple

@ row-wise

@ easy blocked formats

=y = Ha e
~ DavidSemeraro (NCSAY csas7 September26,2013 14/38

10 0 2 O
34 0 5 0
A=|6 0 7 8 9
0 0 10 11 O
0 0 0 0 12
AA = [120 9.0 70 50 1.0 20 11.0 3.0 6.0 4.0 8.0 10.0]
JR =15 3 3 2 1 1 4 2 3 2 3 4]
Jjc =165 5 3 4 1 4 4 1 1 2 4 3]
@ simple, often used for entry
Question: Do you need this much storage? |

10 0 2 O
34 0 5 0
A=16 0 7 8 9
0 0 10 11 O
00 0 0 12
AA = [1.0 20 3.0 40 50 6.0 7.0 80 9.0 10.0 11.0 12.0]
A =11 4 1 2 4 1 3 4 5 3 4 5]
A =11 3 6 10 12 13]

@ Length of AA and JA is nnz; length of [Aisn + 1

@ JA(j) gives the index (offset) to the beginning of row j in AA and JA (one
origin due to Fortran)

@ no structure, fast row access, slow column access (why?)

@ related: CSC, MSR

u]
o)
I
ul
it
<
¢

10 0 2 0
34 0 5 0
A=16 0 7 8 9
0 0 10 11 O
00 0 0 12

AA= [1.0 40 70 11.0 120 = 20 3.0 50 6.0 80 9.0 10.0]
JA= [7 8 10 13 14 14 4 1 4 1 4 5 3

@ places importance on diagonal (often nonzero and accessed frequently)
@ first n entries are the diag

@ n+1isempty

@ rest of AA are the nondiagonal entries

@ first n + 1 entries in JA give the index (offset) of the beginning of the row
(the IA of CSRis in this JA)

@ rest of JA are the columns indices
[m] = = =

Q>

102 0 O * 1.0 20
340 5 0 3.0 40 50
A=|0 6 7 0 8 DIAG= |60 7.0 80| IOFF=[-1 0 2]
009 10 0 9.0 10.0 =
0 0 0 11 12 11.0 12.0

@ need to know the offset structure
@ some entries will always be empty

Da0

u]
o)
I
ul
it

1 02 0 O 1.0 20 0.0 1 31
340 5 0 3.0 40 5.0 1 2 4
A=|0 6 7 0 8 COEF=|60 70 80| JCOEF=1|2 3 5
00 9 10 O 9.0 10.0 0.0 3 4 4
0 0 0 11 12 11.0 12.0 0.0 4 5 5

@ Form columns from first non-zero in each row, repeat.
@ used more on vector machines (what? why?)

@ assumes low number of nnz per row (=number of columns in COEFF and
JCOEFF)

u]
o)
I
ul
it
<
¢

@ like DIA (and CDS),but more space-efficient
@ costs more to gather and scatter

Take 3 }
10 -3 01 O 0
0 9 6 0 -2 0
A 3 0 87 0 0
0 6 07 5 4
0 0 00 9 13
0 0 00 5 1]
And shift:) }
100 =3 1
9 6 2
3 8 7
A=le 7 5 4
9 13
5 -1 |
o = = = = DA

10 -3 1
9 6 2
3 8 7
A=216 7 5 4
9 13
5 -1
Now store the columns and column indices:
10 9 3 6 9 5 1 21 2 5 5
-3 6 8 7 13 -1 2 3 3 4 6 6
VAL=11 5 75 0 of “OL=1|45 450 0
0 0 0 4 O 0 00 0 6 0 O
o = = = = 9waQe

@ now reorder in terms of largest to smallest nnz in each row

@ in JDS, the number of jagged diagonals is the number of nnz in the first
row of VAL. This is the max nnz in any row.

@ PERM: permutation array to reorder rows

@ /DIAG: jagged diags in order

@ COL: column indices

@ JDPTR: points to the beginning of each diagonal

@ advantage for mat-mat (see “Krylov subspace methods on
supercomputers” by Saad)

@ this is actually ITPACK or Purdue storage

JDIAG= 6 9 3 10 9 5, 7 6 8 -3 13 —-1; 5 -2

COL = 2 21 1 55 4332 6 6, 5
[

PERM= [4 2 3 1 5 6
JDPTR= [1 7 13 17]

FSEEN
[T
o\ H~

1.0 20 00 00 30 4.0
50 60 00 00 70 80
A 0.0 00 9.0 10.0 11.0 12.0
~ |00 0.0 13.0 14.0 150 16.0
170 180 0.0 0.0 20.0 210
220 23.0 00 0.0 240 25.0

1.0 3.0 9.0 11.0 17.0 20.0
50 7.0 15.0 13.0 22.0 24.0
2.0 40 100 12.0 18.0 21.0
6.0 80 14.0 16.0 23.0 250

AA =

JA=[1 5 3 55 1 5
IA=[1 3 5 7]

@ each column of AA is a2 x 2 block

@ JA(k) = column index of (1, 1) entries of the kth block
@ declared as AA(2,2,6)

@ blocks arise in many apps
@ variant: variable block size

o = = = = 9Dac

Also row-wise -~ -
1.0 50 20 6.0

30 7.0 4.0 8.0
9.0 15.0 10.0 14.0
AA=1110 130 120 16.0
17.0 22.0 18.0 23.0
200 24.0 21.0 25.0]

JA=[1 5 3 55 1 5
IA=[1 3 5 7]

@ each row of AA is a2 x 2 block (can be a drawback)
@ JA, IA same, AA(6,2,2)
@ if elements of blocks are accessed at the same time: rows are better (C)

@ if elements of similar positions in different blocks are accessed at the
same time: columns are better (C) o

@ for “skyline” matrices (variable band, see oirect methods for sparse matrices” by Duft, Erisman, Reid)
@ can be used for diagonal block matrices

@ skyline structure is preserved in basic GE

o for symmetric: Place all the rows (in order) into VAL

@ JA points to the beginning of each row

@ JA implicit

@ for nonsymmetric: store L in SSK format, then U in column-wise SSK see

“SPARSEKIT” by Saad

3
mowtom
" mtmm
R+ RE R
LR I)
R I
" L T]
E w4 mEE .
How o
Hmmtmn
R4 EERR
o 4om o
¥ o mHtmEEERR
3
w4omow
+HmEm

@+NH

Similar to CSR, but rather than a flat AA vector, each row is a linked list of
elements

first element of each row is accessed by ROOT
each element in AA has a corresponding NEXT entry
—1 indicates the end of a row

column lookup take O(nnz); one semi-costly fix: store a columnwise index
in the same way as rows.

very good element insertion time, but more memory

l

7 00 00O
012000

o o

[q\em)

o O

N O

o O

0 00 0 6 4

@ CSR
@ CSC
e COO
o LIL

Dac

®)
®)
(&

ANOONTNOAN

<STOMOr~L0AN

MO TN~ M

AN T OO

S O oW
SO ANO
oNO O

S = N O

0 00 0 o6 4

N O OO

l

=

— i
e~
Srwsmo~T
Z
Slna~~a oo w
< ®
SN~ < 0o Ww
Sltoanwo
~l- om0 oOoN~®

o

99}

o
M71222564
S-raumoasowno
Sl-von~o o
Mt oON~®

z = Ax, Amxn> Xnx1s Zmx1

input A, x
z=0
for i=1 to m
for col = A(i,:)
z(i) = z(i) + A(i, col)x(col)
end
end

@ difference between CSR and LIL is computing line 4
@ CSR: rows are contiguous...(next slide)
@ LIL: follow rows through linked list

z = Ax, Amxn> Xnx1s Zmx1

1

2 Z(I)=0

3 K1 = IA(CI)
4 K2 = TA(CI+1)-1
5 DO J=K1, K2
6 z(I) = z(I) + ACI)*x(JA(CD))
7 ENDDO
s ENDDO

@ O(nnz)
@ marches down the rows
@ very cheap

z = AX, Apxns Xnx1s Zmx1

DO I=1, M/2

z(I)=0

z(I+M/2)=0

K1 = IA(CI)

K2 IACI+1)-1

K3 IACI+M/2)

K4 TACI+M/2+1) -1

DO J=0,MIN(K2-K1,K4-K3)

z(I) = z(I) + ACK1+1)*x(JA(K1+1))

10 z(I+M/2) = z(I+M/2) + A(K3+1)*x(JA(K3+1))
1 ENDDO
12 ! ... finish up
13 ENDDO

© ©® N o o B~ 0 N o=

@ JA structure allows two data streams

@ ways to optimize (“SMPP”, Douglas, Bank)
Z = AB, Amxns Buxps Zmxp

for i=1 to m
for j=1 to n
Z(i,j) = dot(A(i,), B:,)
end
end
return Z

@ obvious problem: column selection of B is expensive for CSR

@ not-so-obvious problem: Z is sparse(!!), but the algorithm doesn’t account
for this.

u]
o)
I
ul
it
<
¢

Z = AB, Anxns anps Zmxp

Z=0
for i=1 to m
for colA =A(i,:)
for colB = A(colA,:)
Z(i,colB)+ = A(i, colA) - B(colA, colB)
end
end
end
return Z

© ® N o o ~ W N =

@ only marches down rows

@ only computes nonzero entries in Z (aside from fortuitous subtractions)
@ line 5 will do and insert into Z. Two options:

@ precompute sparsity of Z in CSR
@ uselLlL for Z

DQC

I

Hao

N o o A~ W N =

i|IA JA AA
1] 2 2 1
012000 314 5 5
A=10202700 4/2 3 2 COO
00 0050 5| 5 6 4
0 0 00 6 4 6| 1 1 7
715 5 6
8/ 3 2 2
from scipy import sparse
from numpy import array
IA=array([1,2,3,1,4,0,4,2])
JA=array([1,3,4,2,5,0,4,1])
V=array([1,2,5,2,4,7,6,2])
A=sparse.coo_matrix((V, (IA,JA)),shape=(5,6)) ﬂ
o = = = = 9Dac

From COO to CSC:

from scipy import sparse
from numpy import array
import pprint
IA=array([1,2,3,1,4,0,4,2])
JA=array([1,3,4,2,5,0,4,1]1)
V=array([1,2,5,2,4,7,6,2])

[N T S B N S VRN

A=sparse.coo_matrix((V,(IA,JA)),shape=(5,6)).tocsr()

Nonzeros:

1+ print(A.nnz)

To full and view:

1 B=A.todense ()
2 pprint.pprint (B)

@ Solve
Ax=1b

@ Assumption: A is very sparse
@ Let A =N + M, then

Ax = b

(N+M)x = b

Nx = b—Mx

@ Make this into an iteration:
ka = b—Mxk_l

xe = N'(b—Mxeq)

@ Careful choice of N and M can give effective methods
@ More powerful iterative methods exist

