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An application

Latent semantic analysis (LSA) analyzes two-mode data. Looks at
relationships between documents and terms.

natural language processing
information retrieval
information filtering
textual machine learning

Document-term matrix: Document1(D1) = ”I love numerical analysis”
Document1(D2) = ”I do not love numerical analysis, but I love linear algebra.”

I love numerical linear algebra
D1 1 1 1 0 0
D2 1 2 1 1 1
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An application

I love numerical linear algebra
D1 1 1 1 0 0
D2 1 2 1 1 1

One method for weights: Term Count Model
Variation: Term Frequency-Inverse Document Frequency; weight the entries
inversely, highlighting infrequent terms

Let X be the matrix of occurrences (or the inverse).

X =

x1,1 . . . x1,n
...

. . .
...

xm,1 . . . xm,n


Now each row will be a vector relating a term to all documents. Each column
will be a vector relating a document to all terms.

David Semeraro (NCSA) CS 357 September 26, 2013 3 / 38



An application

X =

x1,1 . . . x1,n
...

. . .
...

xm,1 . . . xm,n


X has many zeros
a dot product of the rows gives the correlation between terms over the
documents
XXT gives a cumulative view of the correlation
same with XTX
singular value decompositions, eigenvalue analysis, etc give other
information
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Sparse Matrices
ack: Y. Saad

Vague definition: matrix with few nonzero entries
For all practical purposes: an m× n matrix is sparse if it has
O(min (m, n)) nonzero entries.
This means roughly a constant number of nonzero entries per row and
column
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Sparse Matrices
ack: Y. Saad

Other definitions use a slow growth of nonzero entries with respect to n or
m.
Wilkinson’s Definition: “..matrices that allow special techniques to take
advantage of the large number of zero elements.” (J. Wilkinson)”
A few applications which lead to sparse matrices: Structural Engineering,
Computational Fluid Dynamics, Reservoir simulation, Electrical
Networks, optimization, data analysis, information retrieval (LSI), circuit
simulation, device simulation, . . .
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Sparse Matrices: The Goal

To perform standard matrix computations economically i.e., without
storing the zeros of the matrix.
For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

Example
To add two square dense matrices of size n requires O(n2) operations. To add
two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) =
number of nonzero elements of a matrix X.

remark
A−1 is usually dense, but L and U in the LU factorization may be reasonably
sparse (if a good technique is used).
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Goal

Principle goal: solve
Ax = b

where A ∈ Rn×n, x, b ∈ Rn

Assumption: A is very sparse
General approach: iteratively improve the solution
Given x0, ultimate “correction” is

x1 = x0 + e0

where e0 = x − x0, thus Ae0 = Ax − Ax0,
or

x1 = x0 + A−1r0

where r0 = b − Ax0

David Semeraro (NCSA) CS 357 September 26, 2013 8 / 38



Goal

Principle difficulty: how do we “approximate” A−1r or reformulate the
iteration?
One simple idea:

x1 = x0 + αr0

operation is inexpensive if r0 is inexpensive
requires very fast sparse mat-vec (matrix-vector multiply) Ax0
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Sparse Matrices

So how do we store A?
Fast mat-vec is certainly important; also ask

I what type of access (rows, cols, diag, etc)?
I dynamic allocation?
I transpose needed?
I inherent structure?

Unlike dense methods, not a lot of standards for iterative
I dense BLAS have been long accepted
I sparse BLAS still iterating

Even data structures for dense storage not as obvious
Sparse operations have low operation/memory reference ratio
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Sparse Matrix Qualification

Matrix Market attempts to classify the sparse matrix.
First Qualification (type of values and number of values):

identifier description
Real All entries are float
Complex All entries are a pair of float
Integer All entries are int
Pattern Matrix is a pattern. Actual entries are omitted
Parallel Parallel structure is identified
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Sparse Matrix Qualification

Second Qualification (interpreting values):

identifier description
General A has no symmetry, no symmetry is utilized,

or A is not square
Symmetric aij = aji; only entries on the diagonal

and below(or above) are stored.
Skew-Symmetric aij = −aji; only entries below (or above)

the diagonal (= 0) are stored.
Hermitian aij = āji; only entries on the diagonal

and below (or above) are stored.

see “The Matrix Market Exchange Formats: Initial Design” by Boisvert, Pozo, Remington
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Popular Storage Structures

DNS Dense ELL Ellpack-Itpack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row
CSR Compressed Sparse Row SSK Symmetric Skyline
CSC Compressed Sparse Column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal
LIL Linked List

note: CSR = CRS, CCS = CSC, SSK = SKS in some references
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DNS

A =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0


AA =

[
3 3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

]
simple
row-wise
easy blocked formats
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COO

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [ 12.0 9.0 7.0 5.0 1.0 2.0 11.0 3.0 6.0 4.0 8.0 10.0 ]
JR = [ 5 3 3 2 1 1 4 2 3 2 3 4 ]
JC = [ 5 5 3 4 1 4 4 1 1 2 4 3 ]

simple, often used for entry

Question: Do you need this much storage?
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CSR

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 ]
JA = [ 1 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [ 1 3 6 10 12 13 ]

Length of AA and JA is nnz; length of IA is n + 1
IA(j) gives the index (offset) to the beginning of row j in AA and JA (one
origin due to Fortran)
no structure, fast row access, slow column access (why?)
related: CSC, MSR
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MSR

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [1.0 4.0 7.0 11.0 12.0 ∗ 2.0 3.0 5.0 6.0 8.0 9.0 10.0]
JA = [7 8 10 13 14 14 4 1 4 1 4 5 3]

places importance on diagonal (often nonzero and accessed frequently)
first n entries are the diag
n + 1 is empty
rest of AA are the nondiagonal entries
first n + 1 entries in JA give the index (offset) of the beginning of the row
(the IA of CSR is in this JA)
rest of JA are the columns indices
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DIA
or CDS

A =


1 0 2 0 0
3 4 0 5 0
0 6 7 0 8
0 0 9 10 0
0 0 0 11 12

 DIAG =


∗ 1.0 2.0

3.0 4.0 5.0
6.0 7.0 8.0
9.0 10.0 ∗
11.0 12.0 ∗

 IOFF =
[
−1 0 2

]

need to know the offset structure
some entries will always be empty
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ELL

A =


1 0 2 0 0
3 4 0 5 0
0 6 7 0 8
0 0 9 10 0
0 0 0 11 12

 COEF =


1.0 2.0 0.0
3.0 4.0 5.0
6.0 7.0 8.0
9.0 10.0 0.0

11.0 12.0 0.0

 JCOEF =


1 3 1
1 2 4
2 3 5
3 4 4
4 5 5


Form columns from first non-zero in each row, repeat.
used more on vector machines (what? why?)
assumes low number of nnz per row (=number of columns in COEFF and
JCOEFF)
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JDS

like DIA (and CDS),but more space-efficient
costs more to gather and scatter

Take

A =


10 −3 0 1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1


And shift:

A→


10 −3 1
9 6 −2
3 8 7
6 7 5 4
9 13
5 −1
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A→


10 −3 1
9 6 −2
3 8 7
6 7 5 4
9 13
5 −1


Now store the columns and column indices:

VAL =


10 9 3 6 9 5
−3 6 8 7 13 −1
1 −2 7 5 0 0
0 0 0 4 0 0

 COL =


1 2 1 2 5 5
2 3 3 4 6 6
4 5 4 5 0 0
0 0 0 6 0 0
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JDS

now reorder in terms of largest to smallest nnz in each row
in JDS, the number of jagged diagonals is the number of nnz in the first
row of VAL. This is the max nnz in any row.
PERM: permutation array to reorder rows
JDIAG: jagged diags in order
COL: column indices
JDPTR: points to the beginning of each diagonal
advantage for mat-mat (see “Krylov subspace methods on
supercomputers” by Saad)
this is actually ITPACK or Purdue storage

JDIAG = [6 9 3 10 9 5; 7 6 8 −3 13 −1; 5 −2 7 1; 4; ]
COL = [2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6]
PERM = [4 2 3 1 5 6]
JDPTR = [1 7 13 17]
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Blocked

A =


1.0 2.0 0.0 0.0 3.0 4.0
5.0 6.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 10.0 11.0 12.0
0.0 0.0 13.0 14.0 15.0 16.0
17.0 18.0 0.0 0.0 20.0 21.0
22.0 23.0 0.0 0.0 24.0 25.0



AA =


1.0 3.0 9.0 11.0 17.0 20.0
5.0 7.0 15.0 13.0 22.0 24.0
2.0 4.0 10.0 12.0 18.0 21.0
6.0 8.0 14.0 16.0 23.0 25.0


JA =

[
1 5 3 5 5 1 5

]
IA =

[
1 3 5 7

]
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Blocked

each column of AA is a 2× 2 block
JA(k) = column index of (1, 1) entries of the kth block
declared as AA(2, 2, 6)
blocks arise in many apps
variant: variable block size
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Blocked
Also row-wise

AA =


1.0 5.0 2.0 6.0
3.0 7.0 4.0 8.0
9.0 15.0 10.0 14.0

11.0 13.0 12.0 16.0
17.0 22.0 18.0 23.0
20.0 24.0 21.0 25.0


JA =

[
1 5 3 5 5 1 5

]
IA =

[
1 3 5 7

]
each row of AA is a 2× 2 block (can be a drawback)
JA, IA same, AA(6, 2, 2)
if elements of blocks are accessed at the same time: rows are better (C)
if elements of similar positions in different blocks are accessed at the
same time: columns are better (C)
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SSK, NSK

for “skyline” matrices (variable band, see “Direct methods for sparse matrices” by Duff, Erisman, Reid)
can be used for diagonal block matrices
skyline structure is preserved in basic GE
for symmetric: Place all the rows (in order) into VAL
IA points to the beginning of each row
JA implicit
for nonsymmetric: store L in SSK format, then U in column-wise SSK see

“SPARSEKIT” by Saad
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LIL

Similar to CSR, but rather than a flat AA vector, each row is a linked list of
elements
first element of each row is accessed by ROOT
each element in AA has a corresponding NEXT entry
−1 indicates the end of a row
column lookup take O(nnz); one semi-costly fix: store a columnwise index
in the same way as rows.
very good element insertion time, but more memory
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try it...

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4


CSR
CSC
COO
LIL

David Semeraro (NCSA) CS 357 September 26, 2013 28 / 38



Example

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



i IA JA AA
1 2 2 1
2 3 4 2
3 4 5 5
4 2 3 2
5 5 6 4
6 1 1 7
7 5 5 6
8 3 2 2

COO

i IA JA AA
1 1 1 7
2 2 2 1
3 4 3 2
4 6 2 2
5 7 4 2
6 9 5 5
7 - 5 6
8 - 6 4

CSR

i IA JA AA NEXT
1 4 3 2 -1
2 3 2 2 5
3 2 2 1 1
4 8 1 7 -1
5 6 4 2 -1
6 - 5 6 7
7 - 6 4 -1
8 - 5 5 -1

LIL
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Sparse Matrix-Vector Multiply

z = Ax, Am×n, xn×1, zm×1

1 input A, x
2 z = 0
3 for i = 1 to m
4 for col = A(i, :)
5 z(i) = z(i) + A(i, col)x(col)
6 end

7 end

difference between CSR and LIL is computing line 4
CSR: rows are contiguous...(next slide)
LIL: follow rows through linked list
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Sparse Matrix-Vector Multiply
CSR

z = Ax, Am×n, xn×1, zm×1

1 DO I=1, m

2 Z(I)=0

3 K1 = IA(I)

4 K2 = IA(I+1)-1

5 DO J=K1, K2

6 z(I) = z(I) + A(J)*x(JA(J))

7 ENDDO

8 ENDDO

O(nnz)
marches down the rows
very cheap
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Sparse Matrix-Vector Multiply
CSR and Data Streams

z = Ax, Am×n, xn×1, zm×1

1 DO I=1, M/2

2 z(I)=0

3 z(I+M/2)=0

4 K1 = IA(I)

5 K2 = IA(I+1)-1

6 K3 = IA(I+M/2)

7 K4 = IA(I+M/2+1)-1

8 DO J=0,MIN(K2-K1,K4-K3)

9 z(I) = z(I) + A(K1+J)*x(JA(K1+J))

10 z(I+M/2) = z(I+M/2) + A(K3+J)*x(JA(K3+J))

11 ENDDO

12 ! ... finish up

13 ENDDO

IA structure allows two data streams
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Sparse Matrix-Matrix Multiply

ways to optimize (“SMPP”, Douglas, Bank)

Z = AB, Am×n, Bn×p, zm×p

1 for i = 1 to m
2 for j = 1 to n
3 Z(i, j) = dot(A(i, :), B(:, j))
4 end

5 end

6 return Z

obvious problem: column selection of B is expensive for CSR
not-so-obvious problem: Z is sparse(!!), but the algorithm doesn’t account
for this.

David Semeraro (NCSA) CS 357 September 26, 2013 33 / 38



Sparse Matrix-Matrix Multiply

Z = AB, Am×n, Bn×p, zm×p

1 Z=0

2 for i = 1 to m
3 for colA = A(i, :)
4 for colB = A(colA, :)
5 Z(i, colB)+ = A(i, colA) · B(colA, colB)
6 end

7 end

8 end

9 return Z

only marches down rows
only computes nonzero entries in Z (aside from fortuitous subtractions)
line 5 will do and insert into Z. Two options:

1 precompute sparsity of Z in CSR
2 use LIL for Z

David Semeraro (NCSA) CS 357 September 26, 2013 34 / 38



David Semeraro (NCSA) CS 357 September 26, 2013 35 / 38



Some Python

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



i IA JA AA
1 2 2 1
2 3 4 2
3 4 5 5
4 2 3 2
5 5 6 4
6 1 1 7
7 5 5 6
8 3 2 2

COO

1 from scipy import sparse

2 from numpy import array

3 IA=array([1,2,3,1,4,0,4,2])

4 JA=array([1,3,4,2,5,0,4,1])

5 V=array([1,2,5,2,4,7,6,2])

6

7 A=sparse.coo_matrix((V,(IA,JA)),shape=(5,6))
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Some Python
From COO to CSC:

1 from scipy import sparse

2 from numpy import array

3 import pprint

4 IA=array([1,2,3,1,4,0,4,2])

5 JA=array([1,3,4,2,5,0,4,1])

6 V=array([1,2,5,2,4,7,6,2])

7

8 A=sparse.coo_matrix((V,(IA,JA)),shape=(5,6)).tocsr()

Nonzeros:

1 print(A.nnz)

To full and view:

1 B=A.todense()

2 pprint.pprint(B)
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Simple Matrix Iterations

Solve
Ax = b

Assumption: A is very sparse
Let A = N + M, then

Ax = b
(N + M)x = b

Nx = b − Mx

Make this into an iteration:

Nxk = b − Mxk−1

xk = N−1(b − Mxk−1)

Careful choice of N and M can give effective methods
More powerful iterative methods exist

David Semeraro (NCSA) CS 357 September 26, 2013 38 / 38


