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Today:

Objectives
identify the most widely used quadrature method
is it cheap?
is it effective?
how does it compare to Newton-Cotes (Trapezoid, Simpson, etc)?

Material
Section 6.2
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Quadrature

up until now, our quadrature methods were of the form∫ b

a
f (x) dx ≈

n∑
j=0

wjf (xj)

where xj are equally spaced nodes
Trapezoid: ∫ b

a
f (x) dx ≈ b − a

2
f (a) +

b − a
2

f (b)

Simpson: ∫ b

a
f (x) dx ≈ b − a

6
f (a) +

2(b − a)
3

f
(

a + b
2

)
+

b − a
6

f (b)

Similar for higher order polynomial Newton-Cotes rules
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Quadrature with Freedom

!
These quadrature rules have one thing in common: they’re restrictive

e.g. Simpson:∫ b

a
f (x) dx ≈ b − a

6
f (a) +

2(b − a)
3

f
(

a + b
2

)
+

b − a
6

f (b)

Trapezoid, Simpson, etc (Newton-Cotes) are based on equally spaced
nodes

We know one thing already from interpolation: equally spaced nodes
result in wiggle.
What other choice do we have? (...recall how we fixed wiggle in
interpolation: by moving the location of the nodes)
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Gaussian Quadrature

free ourselves from equally spaced nodes
combine selection of the nodes and selection of the weights into one
quadrature rule

Gaussian Quadrature
Choose the nodes and coefficients optimally to maximize the degree of
precision of the quadrature rule:∫ b

a
f (x) dx ≈

n∑
j=0

wjf (xj)

Goal
Seek wj and xj so that the quadrature rule is exact for really high polynomials
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Gaussian Quadrature

∫ b

a
f (x) dx ≈

n∑
j=0

wjf (xj)

we have n + 1 points xj ∈ [a, b], a 6 x0 < x1 < · · · < xn−1 < xn 6 b.
we have n + 1 real coefficients wj

so there are 2n + 2 total unknowns to take care of

there were only 2 unknowns in the case of trapezoid (2 weights)
there were only 3 unknowns in the case of Simpson (3 weights)
there were only n + 1 unknowns in the case of general Newton-Cotes
(n + 1 weights)

2n + 2 unknowns (using n + 1 nodes) can be used to exactly interpolate and
integrate polynomials of degree up to 2n + 1
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Better Nodes Example

The first thing we do is SIMPLIFY
consider the case of n = 1 (2-point)
consider [a, b] = [−1, 1] for simplicity
we know how the trapezoid rule works
Question: can we possibly do better using only 2 function evaluations?
Goal: Find w0, w1, x0, x1 so that∫ 1

−1
f (x) dx ≈ w0f (x0) + w1f (x1)

is as accurate as possible...
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Graphical View

Consider ∫ 2

1
x3 + 1 dx = 4.75
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Derive...

Again, we are considering [a, b] = [−1, 1] for simplicity:∫ 1

−1
f (x) dx ≈ w0f (x0) + w1f (x1)

Goal: find w0, w1, x0, x1 so that the approximation is exact up to cubics. So try
any cubic:

f (x) = c0 + c1x + c2x2 + c3x3

This implies that:∫ 1

−1
f (x) dx =

∫ 1

−1

(
c0 + c1x + c2x2 + c3x3) dx

= w0
(
c0 + c1x1 + c2x2

1 + c3x3
1
)
+

w1
(
c0 + c1x2 + c2x2

2 + c3x3
2
)
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Derive...

∫ 1

−1
f (x) dx =

∫ 1

−1

(
c0 + c1x + c2x2 + c3x3) dx

= w0
(
c0 + c1x1 + c2x2

1 + c3x3
1
)
+

w1
(
c0 + c1x2 + c2x2

2 + c3x3
2
)

Rearrange into constant, linear, quadratic, and cubic terms:

c0

(
w0 + w1 −

∫ 1

−1
dx

)
+ c1

(
w0x0 + w1x1 −

∫ 1

−1
x dx

)
+

c2

(
w0x2

0 + w1x2
1 −

∫ 1

−1
x2 dx

)
+ c3

(
w0x3

0 + w1x3
1 −

∫ 1

−1
x3 dx

)
= 0

Since c0, c1, c2 and c3 are arbitrary, then their coefficients must all be zero.
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Derive...

This implies:

w0 + w1 =

∫ 1

−1
dx = 2 w0x0 + w1x1 =

∫ 1

−1
x dx = 0

w0x2
0 + w1x2

1 =

∫ 1

−1
x2 dx =

2
3

w0x3
0 + w1x3

1 =

∫ 1

−1
x3 dx = 0

Some algebra leads to:

w0 = 1 w1 = 1 x0 = −

√
3

3
x1 =

√
3

3

Therefore: ∫ 1

−1
f (x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)
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Over another interval?

∫ 1

−1
f (x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)

∫ b

a
f (x) dx ≈?

integrating over [a, b] instead of [−1, 1] needs a transformation: a change
of variables
want t = c1x + c0 with t = −1 at x = a and t = 1 at x = b
let t = 2

b−a x − b+a
b−a

(verify)
let x = b−a

2 t + b+a
2

then dx = b−a
2 dt
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Over another interval?

∫ b

a
f (x) dx ≈?

let x = b−a
2 t + b+a

2

then dx = b−a
2 dt∫ b

a
f (x) dx =

∫ 1

−1
f
(
(b − a)t + b + a

2

)
b − a

2
dt

now use the quadrature formula over [−1, 1]
note: using two points, n = 1, gave us exact integration for polynomials of
degree less 2*1+1 = 3 and less.
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Over another interval?

Previous example... ∫ 2

1
x3 + 1 dx = 4.75

∫ 2

1
f (x)dx =

1
2

∫ 1

−1
f
(

t + 3
2

)
dt

≈ 1
2

[
f

(
3 +

√
3

3

2

)
+ f

(
3 −

√
3

3

2

)]

where x = 3+t
2
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Over another interval?

Evaluating... ∫ 2

1
x3 + 1 dx

∫ 2

1
x3 + 1 dx ≈ 1

2

[
f

(
3 +

√
3

3

2

)
+ f

(
3 −

√
3

3

2

)]

≈ 1
2

[
f

(
9 +
√

3
6

)
+ f

(
9 −
√

3
6

)]

≈ 1
2
[f (1.788651) + f (1.211325)]

≈ 1
2
[6.722382 + 2.777387]

= 4.749885

where f (x) = x3 + 1
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Extending Gauss Quadrature

we need more to make this work for more than two points
A sensible quadrature rule for the interval [−1, 1] based on 1 node would
use the node x = 0. This is a root of φ(x) = x
Notice: ± 1√

3
are the roots of φ(x) = 3x2 − 1

general φ(x)?
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Gauss Quadrature Theorem

Karl Friedrich Gauss proved the following result:
Let q(x) be a nontrivial polynomial of degree n + 1 such that∫ b

a
xkq(x)dx = 0 (0 6 k 6 n)

and let x0, x1, . . . , xn be the zeros of q(x). Then∫ b

a
f (x)dx ≈

n∑
i=0

Aif (xi), Ai =

∫ b

a
`i(x)dx

will be exact for all polynomials of degree at most 2n + 1.
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Sketch of Proof

Let f (x) be a polynomial of degree 2n + 1. Then we can write
f (x) = p(x)q(x) + r(x), where p(x) and r(x) are of degree at most n
(This is basically dividing f by q with remainder r).
Then by the hypothesis,

∫b
a p(x)q(x)dx = 0. Further,

f (xi) = p(xi)q(xi) + r(xi) = r(xi). Thus,∫ b

a
f (x)dx =

∫ b

a
r(x)dx ≈

n∑
i=0

f (xi)

∫ b

a
`i(x)dx

But this is exact because r(x) is (at most) a degree n polynomial.
Thus, we need to find the polynomials q(x).
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Orthogonal Polynomials

Orthogonality of Functions
Two functions g(x) and h(x) are orthogonal on [a, b] if∫ b

a
g(x)h(x) dx = 0

so the nodes we’re using are roots of orthogonal polynomials
these are the Legendre Polynomials

David Semeraro (NCSA) CS 357 October 24, 2013 19 / 29



Legendre Polynomials
given on the exam

φ0 = 1
φ1 = x

φ2 =
3x2 − 1

2

φ3 =
5x3 − 3x

2
...

In general:

φn(x) =
2n − 1

n
xφn−1(x) −

n − 1
n

φn−2(x)
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Notes on Legendre Roots

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

The Legendre Polynomials are orthogonal (nice!)
The Legendre Polynomials increase in polynomials order (like
monomials)
The Legendre Polynomials don’t suffer from poor conditioning (unlike
monomials)
The Legendre Polynomials don’t have a closed form expression
(recursion relation is needed)
The roots of the Legendre Polynomials are the nodes for Gaussian
Quadrature (GL nodes)
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Quadrature Nodes (see)
Often listed in tables
Weights determined by extension of above
Roots are symmetric in [−1, 1]
Example:

1 if(n==0)

2 x = 0; w = 2;

3 if(n==1)

4 x(1) = -1/sqrt(3); x(2) = -x(1);

5 w(1) = 1; w(2) = w(1);

6 if(n==2)

7 x(1) = -sqrt(3/5); x(2) = 0; x(3) = -x(1);

8 w(1) = 5/9; w(2) = 8/9; w(3) = w(1);

9 if(n==3)

10 x(1) = -0.861136311594053; x(4) = -x(1);

11 x(2) = -0.339981043584856; x(3) = -x(2);

12 w(1) = 0.347854845137454; w(4) = w(1);

13 w(2) = 0.652145154862546; w(3) = w(2);

14 if(n==4)

15 x(1) = -0.906179845938664; x(5) = -x(1);

16 x(2) = -0.538469310105683; x(4) = -x(2);

17 x(3) = 0;

18 w(1) = 0.236926885056189; w(5) = w(1);

19 w(2) = 0.478628670499366; w(4) = w(2);

20 w(3) = 0.568888888888889;

21 if(n==5)

22 x(1) = -0.932469514203152; x(6) = -x(1);

23 x(2) = -0.661209386466265; x(5) = -x(2);

24 x(3) = -0.238619186083197; x(4) = -x(3);

25 w(1) = 0.171324492379170; w(6) = w(1);

26 w(2) = 0.360761573048139; w(5) = w(2);

27 w(3) = 0.467913934572691; w(4) = w(3);
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View of Nodes

1.0000 1.0000

Order 2
1.0000 1.0000

Order 2
1.0000 1.0000

Order 2
1.0000 1.0000

Order 2

0.5556 0.8889 0.5556

Order 3
0.5556 0.8889 0.5556

Order 3
0.5556 0.8889 0.5556

Order 3
0.5556 0.8889 0.5556

Order 3

0.3479 0.6521 0.6521 0.3479

Order 4
0.3479 0.6521 0.6521 0.3479

Order 4
0.3479 0.6521 0.6521 0.3479

Order 4
0.3479 0.6521 0.6521 0.3479

Order 4

0.2369 0.4786 0.5689 0.4786 0.2369

Order 5
0.2369 0.4786 0.5689 0.4786 0.2369

Order 5
0.2369 0.4786 0.5689 0.4786 0.2369

Order 5
0.2369 0.4786 0.5689 0.4786 0.2369

Order 5

-1 -0.5 0 0.5 1

0.1713 0.3608 0.4679 0.4679 0.3608 0.17130.1713 0.3608 0.4679 0.4679 0.3608 0.17130.1713 0.3608 0.4679 0.4679 0.3608 0.17130.1713 0.3608 0.4679 0.4679 0.3608 0.1713

Order 6
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Theory

The connection between the roots of the Legendre polynomials and exact
integration of polynomials is established by the following theorem.

Theorem
Suppose that x0, x1, . . . , xn are roots of the nth Legendre polynomial Pn(x) and
that for each i = 0, 1, . . . , n the numbers wi are defined by

wi =

∫ 1

−1

n∏
j = 0
j , i

x − xj

xi − xj
dx =

∫ 1

−1
`i(x) dx

Then ∫ 1

−1
f (x)dx =

n∑
i=0

wif (xi),

where f (x) is any polynomial of degree less or equal to 2n + 1.
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Do not!

!!!
When evaluating a quadrature rule∫ 1

−1
f (x)dx =

n∑
i=0

wif (xi).

do not generate the nodes and weights each time. Use a lookup table...
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Example

Approximate
∫ 1.5

1
x2 ln x dx using Gaussian quadrature with n = 1.

Solution As derived earlier we want to use
∫ 1

−1
f (x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)
From earlier we know that we are interested in∫ 1.5

1
f (x) dx =

∫ 1

−1
f
(
(1.5 − 1)t + (1.5 + 1)

2

)
1.5 − 1

2
dt

Therefore, we are looking for the integral of

1
4

∫ 1

−1
f
(

x + 5
4

)
dx =

1
4

∫ 1

−1

(
x + 5

4

)2

ln
(

x + 5
4

)
dx

Using Gaussian quadrature, our numerical integration becomes:

1
4

(−
√

3
3 + 5
4

)2

ln

(
−

√
3

3 + 5
4

)
+

( √
3

3 + 5
4

)2

ln

( √
3

3 + 5
4

) = 0.1922687
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Example

Approximate
∫ 1

0
x2e−x dx using Gaussian quadrature with n = 1.

SolutionWe again want to convert our limits of integration to -1 to 1. Using the
same process as the earlier example, we get:∫ 1

0
x2e−xdx =

1
2

∫ 1

−1

(
t + 1

2

)2

e(t+1)/2dt.

Using the Gaussian roots we get:

∫ 1

0
x2e−xdx ≈ 1

2

(−
√

3
3 + 1
2

)2

e(−
√

3
3 +1)/2 +

( √
3

3 + 1
2

)2

e(
√

3
3 +1)/2

 = 0.1594104
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Numerical Question
How does n point Gauss quadrature compare with n point Newton-Cotes...
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Examples
with Python...

Example
int gauss.py: base routine for Gauss quadrature

Example

int gauss test.py: integrate
∫5

0 xe−x dx with
1 1 subinterval, increasing number of nodes
2 3 nodes, increases number of intervals (panels)

Result: fewer total evaluations in GL quadrature with 1 subinterval and many
nodes versus 3 nodes and many subpanels. Also more accurate.
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