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@ identify the most widely used quadrature method
@ is it cheap?
@ is it effective?

@ how does it compare to Newton-Cotes (Trapezoid, Simpson, etc)?

@ Section 6.2 l




@ up until now, our quadrature methods were of the form

b n

J flx)dx ~ ijf(xj)
a =0

where x; are equally spaced nodes
@ Trapezoid:

u ; f(u) 4 b—a
@ Simpson:

— 2(b—a) (a+b\ b—a
. ¢ S+ —3 f(2)+ ¢ /(b

@ Similar for higher order polynomial Newton-Cotes rules

o P = z 9ac
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These quadrature rules have one thing in common: they're restrictive I

@ e.g. Simpson:

b — —
Jf(x)dx%b6af(a)+2(b a)f(tH—b

b—a
nodes

@ Trapezoid, Simpson, etc (Newton-Cotes) are based on equally spaced

@ We know one thing already from interpolation: equally spaced nodes
result in wiggle.

@ What other choice do we have? (...recall how we fixed wiggle in
interpolation: by moving the location of the nodes)

e — = 9ac



@ free ourselves from equally spaced nodes

@ combine selection of the nodes and selection of the weights into one
quadrature rule

Choose the nodes and coefficients optimally to maximize the degree of
precision of the quadrature rule:

b
Jf( dewa x;)

a ] 0

Seek w; and x; so that the quadrature rule is exact for really high polynomials I

1
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we have n+ 1 points x; € [a,bl,a <xg<x1 <---<x,1 <X, <Db.
we have n + 1 real coefficients w;

@ so there are 2n + 2 total unknowns to take care of

there were only 2 unknowns in the case of trapezoid (2 weights)
there were only 3 unknowns in the case of Simpson (3 weights)

there were only n 4+ 1 unknowns in the case of general Newton-Cotes
(n 4+ 1 weights)



we have n+ 1 points x; € [a,bl,a <xg<x1 <---<x,1 <X, <Db.
we have n + 1 real coefficients w;

@ so there are 2n + 2 total unknowns to take care of

there were only 2 unknowns in the case of trapezoid (2 weights)
there were only 3 unknowns in the case of Simpson (3 weights)

there were only n 4+ 1 unknowns in the case of general Newton-Cotes
(n 4+ 1 weights)

2n + 2 unknowns (using n + 1 nodes) can be used to exactly interpolate and
integrate polynomials of degree up to 2n + 1 J




The first thing we do is SIMPLIFY
@ consider the case of n =1 (2-point)
@ consider [a,b] = [—1, 1] for simplicity
@ we know how the trapezoid rule works
@ Question: can we possibly do better using only 2 function evaluations?
@ Goal: Find wy, w1, xo, x1 SO that

1
|| e wnfn) + wnfto)

is as accurate as possible...
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Consider

| 2 5.5000

|

¥+ 1dx =475

| ~ 4.75000
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Again, we are considering [a, b] = [—1, 1] for simplicity:

1
L F(x) dx = wof (x0) + wif (1)

Goal: find wy, w1, xg, x1 SO that the approximation is exact up to cubics. So try
any cubic:

F(x) = co + c1x + cox® + 32

This implies that:

Jilf(x) dx

1
J (co+ c1x + cox® + c3x°) dx
1

= wp (co + c1x1 + c2x] +0303) +

w1 (co+ 132 + €223 + €3%3)



1 1
J flx)dx = J (co+ c1x + cx* + c3x°) dx
-1 -1

= wo (o + 11 + X +e3x}) +

wi (Co + €122 + 205 + €313

Rearrange into constant, linear, quadratic, and cubic terms:

1 1
o (wo +w, — J dx) + (woxo + wix] — J X dx) +
-1 -1
1 1
¢ | woxg + wix — J Pdx | + o3| woxg 4+ wixg — J ¥dx| =0
—1 —1
DA

Since co, c1, c2 and c3 are arbitrary, then their coefficients must all be zero.



This implies:

1
wo—l-wl:J dx =2
-1

1
WoXo + W1X1 :J xdx =0
~1
! 2
Wox3 + wix3 = J Pdx ==
—1

Wox3 + w1 X5 = Jll X dx =0
Some algebra leads to:
wy=1 w1 =1 xg=———
Therefore:

VERNEE
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@ integrating over [a, b] instead of [—1, 1] needs a transformation: a change
of variables

e wantt=cix+cwitht=—1latx=aandt=1atx =0
o lett= Lx— bt

@ (verify)
o letx =50t 4 bie
@ then dx = 44t



o letx =0t 4 bie
o then dx = 544t
b 1
b—a)t+b+a\b—a
Jf(x)dx:J f<( )2 > 7 dt
a —1
@ now use the quadrature formula over [—1, 1]

@ note: using two points, n = 1, gave us exact integration for polynomials of
degree less 2*1+1 = 3 and less.



Previous example...

2
J x3+1dx:4.75
1

(=] - ) B
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Evaluating...
2
J X+ 1dx
1
2 34 V38 3-8
Jx3+1dx%1f<+3)+f< 3)]
l 2
1. (9+ 3 9- 3
% (1.788651) + f (1.211325)]
~ % [6.722382 + 2.777387]
= 4.749885
where f(x) = x* + 1
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@ we need more to make this work for more than two points

@ A sensible quadrature rule for the interval [—1, 1] based on 1 node would
use the node x = 0. This is a root of d(x) = x

@ Notice: i% are the roots of ¢(x) =322 —1
@ general ¢(x)?



Karl Friedrich Gauss proved the following result:
Let g(x) be a nontrivial polynomial of degree n + 1 such that

Jb xkq(x)dx =0

a

(0<k<n)
and let X0, X1,

., X, be the zeros of g(x). Then

n b
be(x)dx ~ ZA,‘f(xl'),Ai = J ei(x)dx
a i=0

a
will be exact for all polynomials of degree at most 2n + 1.

o> <& = Do
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Let f(x) be a polynomial of degree 2n + 1. Then we can write

f(x) =p(x)q(x) +r(x), where p(x) and r(x) are of degree at most n
(This is basically dividing f by g with remainder r).

Then by the hypothesis, |* p(x)g(x)dx = 0. Further,
fxi) = pxi)g(xi) +r(xi) = r(x;). Thus,

a

b b n b
J flx)dx = J r(x)dx~ ) f(xi)J 2 (x)dx
a i=0 a

But this is exact because r(x) is (at most) a degree n polynomial.
Thus, we need to find the polynomials g(x).



Two functions g(x) and h(x) are orthogonal on [a, b] if

@ so the nodes we're using are roots of orthogonal polynomials
@ these are the Legendre Polynomials

u]
o)
I
ul
it
)

pel
)



bo =

b1 =x
3xr—1

$r = 2
5x3 —3

¢3: X : X

In general:
2n—1 —1
Pulx) = T xdpua (x) — = bualx)

n

o = = = = 9Dac



@ The Legendre Polynomials are orthogonal (nice!)

@ The Legendre Polynomials increase in polynomials order (like
monomials)

@ The Legendre Polynomials don’t suffer from poor conditioning (unlike
monomials)

@ The Legendre Polynomials don’t have a closed form expression
(recursion relation is needed)

@ The roots of the Legendre Polynomials are the nodes for Gaussian
Quadrature (GL nodes) o

Q>



@ Often listed in tables

@ Weights determined by extension of above
@ Roots are symmetric in [—1,1]
@ Example:

1
2
3
4
5
6
7
8
9

if(n==0)
x = 0;
if(n==1)
x(1) =
w(l) =
if(n==2)
x(1) =
w(l) =
if(n==3)
x(1)
x(2)
w(l)
w(2)
if(n==4)
x(D
x(2)
x(3)
w(l)
w(2)
w(3) =

B
~
N
N
[Tl 1

=
~
N
<
(IR}

= 2;

-1/sqrt(3); x(2)

1;

w(2)

-sqrt (3/5); x(2)
5/9; w(2)

-0.
-0.
0.
0.

-0.
-0.

22

-0.
-0.
-0.

RN

861136311594053;
339981043584856;
347854845137454;
652145154862546;

906179845938664;
538469310105683;

.236926885056189;
.478628670499366;
.568888888888889;

932469514203152;
661209386466265;
238619186083197;

.171324492379170;
.360761573048139;
.467913934572691;

-x(1);
w(l);

8/9;

x(4)
x(3)
w(4)
w(3)

x(5)
x(4)

w(5)
w(4)

x(6)
x(5)
x(4)
w(6)
w(5)
w(4)

x(3)
w(3)

-x(1);
-x(2);
w(l);
w(2);

-x(1);
-x(2);

w(l);
w(2);

-x(1);
-x(2);
-x(3);
w(l);
w(2);
w(3);

-x(1);
w(l);




Order 2
1.0000 1.0000
T T
Order 3
0.5556 0.8889 0.5556
Order 4
0.3479 0.6521 0.6521 0.3479
Order 5
0.2369 0.4786 0.5689 0.4786 0.2369
Order 6
01713  0.3608 0.4679
-1

0.4679 03808 01713
-0.5 0 0.5 1
o <o = Dac
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The connection between the roots of the Legendre polynomials and exact
integration of polynomials is established by the following theorem.

Suppose that xg, x1, . .., x, are roots of the nth Legendre polynomial P,(x) and
that for each i = 0,1, ..., n the numbers w; are defined by

1 n x—x; 1
w; = dx:J £(x) dx
J_1 1:[ Xi — Xj —il (x)

j#i
Then

Jllf( dx_Z wif (x;),

i=0
where f(x) is any polynomial of degree less or equal to 2n + 1.




When evaluating a quadrature rule

1
J_lf( dx_Z wif (x;).

i=0
do not generate the nodes and weights each time. Use a lookup table




1.5
Approximate J

x? Inx dx using Gaussian quadrature with n = 1.
1

1
SoLution As derived earlier we want to use J flx)dx~f ( V3

V3
1 —?) + <T
From earlier we know that we are interested in
15 1 1.5—-1)t+ (1.5+1)\ 1.5—1
J f(x)dx:J f<( )2( )> 5 dt
1 —1

Therefore, we are looking for the integral of

) e

2
x+5
() ()
Using Gaussian quadrature, our numerical integration becomes:

2 2
_B 15 _B 15 V3 .5 35
}I[<3T+> 1n< 34+ + 34+ In 34+ :0.1922687.
T
=} = = QR
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1
Approximate J x%e~* dx using Gaussian quadrature with n = 1.

0
Sorution We again want to convert our limits of integration to -1 to 1. Using the
same process as the earlier example, we get:

1 1 2
1 t+1
2, vy 1 (t+1)/2,3¢.
Jo e 2 J—l < 2 ) ‘

Using the Gaussian roots we get:

1 V3 \3 2
szeﬁdxz% (TH> e(f”)/z+< 5 +1> e£HD/2| Z 0.1594104
0




How does #n point Gauss quadrature compare with n point Newton-Cotes... I




int_ gauss test.py: integrate [; xe™* dx with

int_gauss.py: base routine for Gauss quadrature l

@ 1 subinterval, increasing number of nodes

@ 3 nodes, increases number of intervals (panels)

Result: fewer total evaluations in GL quadrature with 1 subinterval and many
nodes versus 3 nodes and many subpanels. Also more accurate.




