

David Semeraro

University of Illinois at Urbana-Champaign

October 29, 2013

http://www.youtube.com/watch?v=TaCmedX7ycs

http://www.youtube.com/watch?v=TaCmedX7ycs

• Newton's law: $\mathbf{f} = d(m\mathbf{v})/dt$

$$\mathbf{p}_i = [x_i, y_i, z_i], \quad \mathbf{v}_i[x'_i, y'_i, z'_i]$$
$$\frac{d\mathbf{p}}{dt} = \mathbf{p}'_i = \mathbf{v}_i$$
$$\mathbf{v}'_i = \frac{1}{m_i}\mathbf{f}_i(t)$$

http://www.youtube.com/watch?v=TaCmedX7ycs

• Newton's law: $\mathbf{f} = d(m\mathbf{v})/dt$

$$\mathbf{p}_i = [x_i, y_i, z_i], \quad \mathbf{v}_i[x'_i, y'_i, z'_i]$$
$$\frac{d\mathbf{p}}{dt} = \mathbf{p}'_i = \mathbf{v}_i$$
$$\mathbf{v}'_i = \frac{1}{m_i} \mathbf{f}_i(t)$$

• Spring Force (Hooke's Law) with damping:

$$\mathbf{f} = -(k_s + k_d \mathbf{d}' \cdot \mathbf{d})\mathbf{d}$$

http://www.youtube.com/watch?v=TaCmedX7ycs

• Newton's law: $\mathbf{f} = d(m\mathbf{v})/dt$

$$\mathbf{p}_i = [x_i, y_i, z_i], \quad \mathbf{v}_i[x'_i, y'_i, z'_i]$$
$$\frac{d\mathbf{p}}{dt} = \mathbf{p}'_i = \mathbf{v}_i$$
$$\mathbf{v}'_i = \frac{1}{m_i} \mathbf{f}_i(t)$$

• Spring Force (Hooke's Law) with damping:

$$\mathbf{f} = -(k_s + k_d \mathbf{d}' \cdot \mathbf{d})\mathbf{d}$$

We need to numerically differentiate

Previous

- Given data y_i at node x_i for i = 0, ..., n, find a polynomial p(x) that approximates the function.
- That is, approximate a function f(x) with some function (polynomial) g(x)

Goals

- Now, try to approximate the derivative of f'(x)
- Begin with Taylor series
- Establish accuracy estimates

Differentiation

- Given f(x+h), f(x) and f(x-h), i.e. f evaluated at evenly spaced points
- Approximate f'(x)

• Use Taylor Series

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi), \quad \text{for } \xi \in [x, x+h]$$

$$f(x) = f(x)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(\xi), \quad \text{for } \xi \in [x-h, x]$$

< □ > < □ > < □ > < □ > < □ >

I

Use Taylor Series

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi), \quad \text{for } \xi \in [x, x+h]$$

$$f(x) = f(x)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(\xi), \quad \text{for } \xi \in [x-h, x]$$

• Don't worry about ξ , some unknown point in the interval

- E - E

Use Taylor Series

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi), \quad \text{for } \xi \in [x, x+h]$$

$$f(x) = f(x)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(\xi), \quad \text{for } \xi \in [x-h, x]$$

- Don't worry about ξ, some unknown point in the interval
- Manipulate, add and subtract the above Taylor Series, so that f'(x) is isolated on one side of the equals sign and an approximation to f'(x) is on the other side

First attempt: Taylor

• Taylor series:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$$

-

<ロ> < 回 > < 回 > < 回 > <

Ξ

I

First attempt: Taylor

• Taylor series:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$$

Thus

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(\xi)$$

Ξ

-

I

• Taylor series:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$$

Thus

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(\xi)$$

 Called a forward difference because of the "forward" looking evaluation of f at f(x + h)

First attempt: Taylor

Forward Difference

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

with

$$error = -\frac{h}{2}f''(\xi) = \mathcal{O}(h)$$

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Numerically estimate p for

$$err = |f'_{exact}(x) - f'_{approx}(x)| = ch^p$$

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Numerically estimate p for

$$err = |f'_{exact}(x) - f'_{approx}(x)| = ch^p$$

• Consider two h values, h_k and h_j , giving

$$err_k = c (h_k)^p$$

 $err_j = c (h_j)^p$

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Numerically estimate p for

$$err = |f'_{exact}(x) - f'_{approx}(x)| = ch^p$$

• Consider two *h* values, *h_k* and *h_j*, giving

$$err_k = c (h_k)^p$$

 $err_j = c (h_j)^p$

So

$$p = \frac{\log(err_k/err_j)}{\log(h_k/h_j)}$$

diff_fwd.py

▶ < Ē ▶ Ē ∽ Q @ October 29, 2013 9 / 23

<ロト < 回ト < 回ト

I

- http://www.cse.illinois.edu/iem/integration/fda/
- Choose "1st order forward" and "1st order backward" to experiment with forward and backward differencing

Forward Difference

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

with

$$error = -\frac{h}{2}f''(\xi) = O(h)$$

Backward Difference

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

with

$$error = \frac{h}{2}f''(\xi) = \mathcal{O}(h)$$

<ロト < 回 > < 回 > < 回 > <

I

Look at the Forward AND Backward Taylor series together

$$\begin{aligned} f(x+h) &= f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f''''(\xi_+) \\ f(x-h) &= f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f''''(\xi_-) \end{aligned}$$

- E - E

Look at the Forward AND Backward Taylor series together

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f''''(\xi_+)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f''''(\xi_-)$$

• Subtract them:

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3}f'''(x) + \mathcal{O}(h^4)$$

Look at the Forward AND Backward Taylor series together

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f''''(\xi_+)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f''''(\xi_-)$$

Subtract them:

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3}f'''(x) + \mathcal{O}(h^4)$$

Thus

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{h^2}{6}f'''(x) + O(h^3)$$

Central Difference

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{h^2}{6}f'''(x) + O(h^3)$$

with

$$error = -\frac{h^2}{6}f'''(\xi) = \mathcal{O}(h^2)$$

More Accurate

- Forward and backward differences are O(h)
- Central difference is $O(h^2)$

 $\langle \Box \rangle \langle \Box \rangle$

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

イロト イヨト イヨト イヨ

E

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

• Numerically estimate p for

$$err = |f'_{exact}(x) - f'_{approx}(x)| = ch^p$$

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

• Numerically estimate p for

$$err = |f'_{exact}(x) - f'_{approx}(x)| = ch^p$$

• Consider two *h* values, *h_k* and *h_j*, giving

$$err_k = c (h_k)^p$$

 $err_j = c (h_j)^p$

David Semeraro (NCSA)

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

• Numerically estimate p for

$$err = |f'_{exact}(x) - f'_{approx}(x)| = ch^p$$

• Consider two *h* values, *h_k* and *h_j*, giving

$$err_k = c (h_k)^p$$

 $err_j = c (h_j)^p$

So

$$p = \frac{\log(err_k/err_j)}{\log(h_k/h_j)}$$

diff_central.py

Image: A math and A

I

900

What's with the Names?

Forward difference looks forward

3

What's with the Names?

Forward difference looks forward

Backward difference looks backward

What's with the Names?

Forward difference looks forward

- http://www.cse.illinois.edu/iem/integration/fda/
- Choose "2nd order centered" to experiment with central differencing

Even Smarter?

• Take a look at the central difference:

$$\Phi(h) = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)$$

<ロ> < 回 > < 回 > < 回 > <

E

Even Smarter?

• Take a look at the central difference:

$$\phi(h) = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)$$

We know that

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + c_2h^2 + c_4h^4 + c_6h^6 + \dots$$

= $\phi(h) + c_2h^2 + c_4h^4 + c_6h^6 + \dots$
 $\phi(h) = f'(x) - c_2h^2 - c_4h^4 - c_6h^6 - \dots$

- E - E
Even Smarter?

• Take a look at the central difference:

$$\phi(h) = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)$$

We know that

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + c_2h^2 + c_4h^4 + c_6h^6 + \dots$$

= $\phi(h) + c_2h^2 + c_4h^4 + c_6h^6 + \dots$
 $\phi(h) = f'(x) - c_2h^2 - c_4h^4 - c_6h^6 - \dots$

• We expect the error to be reduced by 1/4 when h is cut in half.

Even Smarter?

• Take a look at the central difference:

$$\phi(h) = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)$$

We know that

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + c_2h^2 + c_4h^4 + c_6h^6 + \dots$$

= $\phi(h) + c_2h^2 + c_4h^4 + c_6h^6 + \dots$
 $\phi(h) = f'(x) - c_2h^2 - c_4h^4 - c_6h^6 - \dots$

We expect the error to be reduced by 1/4 when h is cut in half.
Utilize this!

$$\Phi(h) = f'(x) - c_2 h^2 - c_4 h^4 - c_6 h^6 - \dots$$

$$\Phi(h/2) = f'(x) - c_2 (h/2)^2 - c_4 (h/2)^4 - c_6 (h/2)^6 - \dots$$

Utilize this!

$$\Phi(h) = f'(x) - c_2 h^2 - c_4 h^4 - c_6 h^6 - \dots$$

$$\Phi(h/2) = f'(x) - c_2 (h/2)^2 - c_4 (h/2)^4 - c_6 (h/2)^6 - \dots$$

• Utilize this!

$$\Phi(h) = f'(x) - c_2 h^2 - c_4 h^4 - c_6 h^6 - \dots$$

$$\Phi(h/2) = f'(x) - c_2 (h/2)^2 - c_4 (h/2)^4 - c_6 (h/2)^6 - \dots$$

• Combine these to eliminate the "c₂" term:

$$\Phi(h) - 4\Phi(h/2) = -3f'(x) - (3/4)c_4h^4 - (15/16)c_6h^6 - \dots$$

- E - E

3

• Utilize this!

$$\Phi(h) = f'(x) - c_2 h^2 - c_4 h^4 - c_6 h^6 - \dots$$

$$\Phi(h/2) = f'(x) - c_2 (h/2)^2 - c_4 (h/2)^4 - c_6 (h/2)^6 - \dots$$

• Combine these to eliminate the "c₂" term:

$$\phi(h) - 4\phi(h/2) = -3f'(x) - (3/4)c_4h^4 - (15/16)c_6h^6 - \dots$$

Dividing by -3

 $\phi(h/2) + (1/3)(\phi(h/2) - \phi(h)) = f'(x) + (1/4)c_4h^4 + (5/16)c_6h^6 - \dots$

.

• Utilize this!

$$\Phi(h) = f'(x) - c_2 h^2 - c_4 h^4 - c_6 h^6 - \dots$$

$$\Phi(h/2) = f'(x) - c_2 (h/2)^2 - c_4 (h/2)^4 - c_6 (h/2)^6 - \dots$$

• Combine these to eliminate the "c₂" term:

$$\Phi(h) - 4\Phi(h/2) = -3f'(x) - (3/4)c_4h^4 - (15/16)c_6h^6 - \dots$$

Dividing by -3

 $\phi(h/2) + (1/3)(\phi(h/2) - \phi(h)) = f'(x) + (1/4)c_4h^4 + (5/16)c_6h^6 - \dots$

Giving us

Fourth Order Richardson Extrapolation

$$f'(x) = \phi(h/2) + (1/3)(\phi(h/2) - \phi(h)) + \mathcal{O}(h^4)$$

where $\phi(h)$ is the central difference approximation.

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) = \phi(h/2) + (1/3)(\phi(h/2) - \phi(h)) + O(h^4)$$

Image: Image:

Consider

$$f(x) = \sin(\pi x)$$
 on $[-1, 1]$

• Approximate $f'(x) = \pi \cos(\pi x)$ with

$$f'(x) = \phi(h/2) + (1/3)(\phi(h/2) - \phi(h)) + O(h^4)$$

• Numerically estimate *p* as before

diff_central.py

E

Image: A math a math

I

590

- We can extend the Richardson extrapolation idea to any order.
- Idea: use $\psi(h) = \phi(h/2) + (1/3)(\phi(h/2) \phi(h))$ to annihilate the fourth order error term:

- We can extend the Richardson extrapolation idea to any order.
- Idea: use $\psi(h) = \phi(h/2) + (1/3)(\phi(h/2) \phi(h))$ to annihilate the fourth order error term:
- Giving us

Sixth Order Richardson Extrapolation

 $f'(x) = \psi(h/2) + (1/15)(\psi(h/2) - \psi(h)) + \mathcal{O}(h^6)$

where $\psi(h)$ is the fourth order Richardson extrapolation.

<ロ> <同> <同> < 同> < 同> < 同

Numerical Differentiation

- Approximate the derivative of f'(x)
 - ▶ Forward difference, O(h) error
 - ▶ Backward difference, O(h) error
 - ► Central difference, O(h²) error
 - Richardson extrapolation, O(h⁴) and better error
- Used Taylor series for deriving each method
- Established accuracy estimates using Taylor series