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@ Newton’s law: f = d(mv)/dt

pi = [xi, vi, zil,
dp

vilx!, yi, z{]
g —Pi=Vi
1
v = Efi(t)
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@ Newton’s law: f = d(mv)/dt

pPi = [xi,yi,Zi], vi[x,-’,y,-’,zi’]
d
P —p=v

Vi/ = ifl(t)

@ Spring Force (Hooke’s Law) with damping:

f=—(ks +ksd"-d)d


http://www.youtube.com/watch?v=TaCmedX7ycs

http://www.youtube.com/watch?v=TaCmedX7ycs
@ Newton’s law: f = d(mv)/dt

pi = xi vz, vilx), v,z
d
P —p=v

Vi/ = ifl(t)

@ Spring Force (Hooke’s Law) with damping:

f=—(ks+ksd -d)d
@ We need to numerically differentiate
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Previous
@ Given data y; at node x; fori =0,...,n, find a polynomial p(x) that
approximates the function.

@ That is, approximate a function f(x) with some function (polynomial) g(x)
Goals

@ Now, try to approximate the derivative of f/(x)
@ Begin with Taylor series

@ Establish accuracy estimates
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@ Approximate f'(x)

@ Given f(x+ h), f(x) and f(x — h), i.e. f evaluated at evenly spaced points




@ Use Taylor Series

2
flx+h) :f(x)—l—hf'(x)—i—%f”(i), for & € [x,x + hl
flx) =f(x)
2
Flo =) = ) B (x) + £ (0)

for & € [x — h, x|



@ Use Taylor Series

2
Flot ) =)+ B () + o 8),
fx) =)

for & € [x,x+ H]
h2
fle—h)=f(x) —hf'(x) + 7f”(£),

for & € [x — h, x]
@ Don’t worry about &, some unknown point in the interval
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@ Use Taylor Series

2
flx+h) :f(x)—l—hf’(x)—l—%f”(i), for & € [x,x + hl
fl) = f(x)

2
Flr—h) = f(x) — hf'(x) + %f”(&), for & € [x —h,x]

@ Don’t worry about &, some unknown point in the interval

@ Manipulate, add and subtract the above Taylor Series, so that f'(x) is
isolated on one side of the equals sign and an approximation to f'(x) is
on the other side



@ Taylor series:

2
Flot ) =)+ b))



@ Taylor series:

@ Thus

2
Flot ) =)+ b))
f,(x) :f(x+h21 _f(X) - gfl/(a)



@ Taylor series:

2
Flot ) =)+ b))
@ Thus
iy = LB )

h "

- Sf ()

@ Called a forward difference because of the “forward” looking
evaluation of f at f(x + h)
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@ Consider
@ Approximate f’(x) = mcos(mx) with

f(x) = sin(7x) on [—1,1]

frin) w HE IS



@ Consider
@ Approximate f’(x) = mcos(mx) with

f(x) = sin(7x) on [—1,1]

f'(x)
@ Numerically estimate p for

flx+h) —f(x)
- h

err = |fe;cact (x) _fu/pprox(x” = ch”
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@ Consider

f(x) = sin(7x) on [—1,1]
@ Approximate f’(x) = mcos(mx) with

£ %f(x—i—h) —f(x)

h
@ Numerically estimate p for

err = |fe§cact (x) _fu/pprox(x” = ch”
@ Consider two & values, ki and k;, giving

err, = ¢ (h)?

errj = c (hj)F
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@ Consider
f(x) = sin(7x) on [—1,1]
@ Approximate f’(x) = mcos(mx) with

F(x) fah) —fx)

h
@ Numerically estimate p for

err = |fe§cact (x) _fu/pprox(x” = ch”
@ Consider two & values, ki and k;, giving

err, = ¢ (h)?
errj = c (hj)F
@ So

B log(erry/err;)

log(hi/hy)
BT r— - = B = E 9ac
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@ http://www.cse.illinois.edu/iem/integration/fda/

@ Choose “1st order forward” and “1st order backward” to experiment with
forward and backward differencing
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@ Look at the Forward AND Backward Taylor series together
flx+h)=f(x)+hf'(x

( + f” + f/l/ + 24f////
3
f(x —h) Zf(X) — hf’(x) + 3f”(x) _ %f’”(x) + ﬂf-////(
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@ Look at the Forward AND Backward Taylor series together
flx+h)

=f(x) + hf'(x) + f” + f”’ + f""
2 3 4
Floe—h) = )~ ")+ ) i Z4f””
@ Subtract them
flx+h) —flx—h) =2hf"(x) + f”’ ) 4 O(h*)



@ Look at the Forward AND Backward Taylor series together
flx+h)

=f(x)+hf'(x) + fu n f,,, n f””
Sl =f ) =) h2f” —”Bf"' )+ Zif
@ Subtract them
Fflx+h) —f(x —h) =2hf'(x) + f///
e Thus
fl = Lxh

)+ O(h*)
_ _ 2
th(x h) +%f///(x)+o(h3)
BT — - = - = = 9Dae



@ Forward and backward differences are O(h)
@ Central difference is O(h?)




@ Consider
@ Approximate f’(x) = mcos(mx) with

f(x) = sin(7x) on [—1,1]
vy L fx+h) —flx—h)
fi) T




@ Consider
@ Approximate f’(x) = mcos(mx) with

f(x) = sin(7x) on [—1,1]

f'(x)

@ Numerically estimate p for

~

L flx+h)—flx—h)
2h

err = |fe;cact (x) _fu/pprox(x” = ch”
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@ Consider

f(x) = sin(7x) on [—1,1]
@ Approximate f’(x) = mcos(mx) with

f'(x)

@ Numerically estimate p for

_flx+h)—flx—h)
- 2h

err = |fe§cact (x) _fu/pprox(x” = ch”
@ Consider two & values, ki and k;, giving

err, = ¢ (h)?

errj = c (hj)F
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@ Consider
f(x) = sin(7x) on [—1,1]
@ Approximate f’(x) = mcos(mx) with

fri) o S = flx =)

2h
@ Numerically estimate p for

err = |fe§cact (x) _fu/pprox(x” = ch”
@ Consider two & values, ki and k;, giving

err, = ¢ (h)?
errj = c (hj)F
@ So

B log(erry/err;)

log(hk/hj)
o = = = 9ac



Log Error

10"

102}

103}

Error Vs H
T T

Convergence rate
T T T

10

10° 107
Log H

50 100 150
N

200




@ Forward difference looks forward

£ zf(x—kh})l —f(x)
@ & & L 4 @ @ ®
x-h X x+h
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@ Forward difference looks forward

£ zf(x—kh) —f(x)

h
@ \ 4 L 4 L 4 @ @
x-h X X+h
@ Backward difference looks backward
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@ Forward difference looks forward

ooy L fx+h) —f(x)
flle) m
@ \ 4 @ e L 4 2
x-h X X+h
@ Backward difference looks backward

x)—f(x—h
L < o @ @ <
x-h X x+h
@ Central difference centers the subtraction around x

von Fxh) —flx—h)
fin) » B
L 4

- ® =
x-h

L L
X x+h
o < = DA
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@ http://www.cse.illinois.edu/iem/integration/fda/

@ Choose “2nd order centered” to experiment with central differencing
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@ Take a look at the central difference:

2h

~f'(x)
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@ Take a look at the central difference:

d(h) =
@ We know that

flx+h)—f(x—h)
2h

~f'(x)
frg S —flr=h)

o + eol® + caht* + c6h® + ...
= & (h) + col® + cah* + ceh® + . ..
$(h) =f'(x) — coh® — cah* — cgh® — ...
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@ Take a look at the central difference:

d(h) =
@ We know that

flx+h) —flx—h)
2h

~f'(x)
frg S —flr=h)

o + eol® + caht* + c6h® + ...
= & (h) + col® + cah* + ceh® + . ..
$(h) =f'(x) — coh® — cah* — cgh® — ...

@ We expect the error to be reduced by 1/4 when / is cut in half.
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@ Take a look at the central difference:

_flx+h) —flx—h)
(k) = 5 ~f')
@ We know that

fllx) = f(x+h)2_]1f(x i), + eol® + caht* + c6h® + ...
= (h) + cah* + c4h* + ceh® + . ..
$(h) =f'(x) — coh® — cah* — cgh® — ...

@ We expect the error to be reduced by 1/4 when / is cut in half.
@ Utilize this!

Cb(h) :f/(X) — Czh2 — C4]’l4 — C6h6 — ..

b(h/2) = f'(x) = c2(h/2)* — ca(h/2)* — cs(h/2)° — ...
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@ Utilize this!
d(h) =

F(x) — coh® — cah* — ceh® — ..

b(h/2) = f'(x) = c2(1/2)* — ca(h/2)* — c(h/2)° — ...



@ Utilize this!
d(h) =

F!(x) — coh® — cyh* — cgh®
&(h/2) =f

2
@ Combine these to eliminate the “c,” term:
4¢p(h/2) =

f1(x) = c2(h/2)* — ca(h/2)* — c6(h/2)
$(h) —

—3f'(x) — (3/4)csh* — (15/16)csh®



@ Utilize this!
d(h) =

F!(x) — coh® — cyh* — cgh®
d(h/2) =f'

f(x) = ca(h/2)* — ca(h/2)* — c6(h/2)

@ Combine these to eliminate the “c,” term:

$(h) —4d(h/2) = —3f'(x) — (3/4)cah* —

@ Dividing by -3
$(h/2) + (1/3)($p(h/2)

(15/16)ceh®
—¢(h))

=f'(x) + (1/4)csh®

(5/16)csh®



@ Utilize this!
(h) =f'(x) — coh® — cgh* — ceh® —
$(h/2) =f'(x) — c2(h/2)* — ca(h/2)* — c6(h/2)° —

@ Combine these to eliminate the “c,” term:

$(h) —4d(h/2) = —3f'(x) — (3/4)csh* — (15/16)ceh® —
@ Dividing by -3
b(h/2) + (1/3)(b(h/2) — (k) = f'(x) + (1/4)csh* + (5/16)ceh® —
@ Giving us

f(x) = b(h/2) + (1/3)(d(1/2) — d(h) + O(h*)

where ¢(h) is the central difference approximation.




@ Consider

f(x) = sin(mx) on [—1,1]
@ Approximate f’(x) = mcos(7x) with

f'(x) = ¢ (h/2) + (1/3)(b(1/2) — b(h)) + O(h)



@ Consider

f(x) = sin(mx) on [—1,1]
@ Approximate f’(x) = mcos(7x) with

@ Numerically estimate p as before

f'(x) = ¢ (h/2) + (1/3)(b(1/2) — b(h)) + O(h)
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@ We can extend the Richardson extrapolation idea to any order.
order error term:

@ Idea: use Y(h) = ¢(h/2) + (1/3)(p(h/2) — $(h)) to annihilate the fourth
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@ We can extend the Richardson extrapolation idea to any order.
order error term:

@ Idea: use Y(h) = ¢(h/2) + (1/3)(p(h/2) — $(h)) to annihilate the fourth
@ Giving us

f'(x) =W(h/2) + (1/15) (P (1/2) —b(R)) + O(h®)
where (/) is the fourth order Richardson extrapolation.




Numerical Differentiation

@ Approximate the derivative of f/(x)

» Forward difference, O(h) error

» Backward difference, O(h) error

» Central difference, O(h?) error

> Richardson extrapolation, O(h*) and better error
@ Used Taylor series for deriving each method

@ Established accuracy estimates using Taylor series



