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Summary: Complexity of Linear Solves

Ax = b
diagonal system: O(n)
upper or lower triangular system: O(n2)

full system with GE: O(n3)

scaled partial pivoting adds O(n2)

full system with LU: O(n3)

LU back solve: O(n2)

m different right-hand sides: O(mn3) or O(n3 + mn2)

tridiagonal system: O(n)
m-band system: O(m2n)
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Summary: Complexity
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Approximate solutions

So far, we are seeking “exact” solutions x∗ to

Ax = b

What if we only need an approximations x̂ to x∗?

We would like some x̂ so that ‖x̂ − x∗‖ 6 ε, where ε is some tolerance.

David Semeraro (NCSA) CS 357 April 6, 2010 4 / 26



The Residual

We can’t actually evaluate
e = x∗ − x̂

But...

For x = x∗

b − Ax ≡ 0

For x = x̂
b − Ax . 0

We call r̂ = b − Ax̂ the residual. It is way to measure the error. In fact

r̂ = b − Ax̂
= Ax∗ − Ax̂
= Aê
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How big is the residual?

For a given approximation, x̂ to x, how “big” is the residual r̂ = b − Ax̂?
‖r‖ gives a magnitude
‖r‖1 =

∑n
j=1 |ri|

‖r‖2 =
(∑n

j=1 r2
i

)1/2

‖r‖∞ = max16j6n |ri|
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Approximating x...
Suppose we made a wild guess to the solution x of Ax = b:

x(0) ≈ x

How do I improve x(0)?

Ideally:
x(1) = x(0) + e(0)

but to obtain e(0), we must know x. Not a viable method.

Ideally (another way):

x(1) = x(0) + e(0)

= x(0) + (x∗ − x(0))

= x(0) + (A−1b − x(0))

= x(0) + A−1(b − Ax(0))

= x(0) + A−1r(0)
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An iteration

Again, the method
x(1) = x(0) + A−1r(0)

is nonsense since A−1 is needed.

What if we approximate A−1? Suppose Q−1 ≈ A−1 and is cheap to construct,
then

x(1) = x(0) + Q−1r(0)

is a good step.

continuing...
x(k) = x(k−1) + Q−1r(k−1)
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What kind of Q−1 do I need?

Rewrite:

x(k) = x(k−1) + Q−1(b − Ax(k−1))

This becomes

Qx(k) = Qx(k−1) + (b − Ax(k−1))

= (Q − A)x(k−1) + b

This is the form in the text (page 322 NMC6).

Or
x(k) = Q−1(Q − A)x(k−1) + Q−1b
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Two Popular Choices

Example
Jacobi iteration approximates A with Q = diag(A).

1 x = x(0)

2

3 Q = D

4

5 for k = 1 to kmax

6 r = b − Ax
7 if ‖r = b − Ax‖ 6 tol, stop
8

9 x = x + Q−1r
10 end
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Two Popular Choices

Example
Gauss-Seidel iteration approximates A with Q = lowertri(A).

1 x = x(0)

2

3 Q = D - L

4

5 for k = 1 to kmax

6 r = b − Ax
7 if ‖r = b − Ax‖ 6 tol, stop
8

9 x = x + Q−1r
10 end
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Why D and D − L?

Look again at the iteration

x(k) = x(k−1) + Q−1r(k−1)

Looking at the error:

x − x(k) = x − x(k−1) − Q−1r(k−1)

Gives
e(k) = e(k−1) − Q−1Ae(k−1)

or
e(k) = (I − Q−1A)e(k−1)

or
e(k) = (I − Q−1A)ke(0)
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Why D and D − L?

We want
e(k) = (I − Q−1A)ke(0)

to converge.

When does ak = ck converge? .....when |c| < 1

Likewise, our iteration converges

‖e(k)‖ = ‖(I − Q−1A)ke(0)‖
6 ‖I − Q−1A‖k‖e(0)‖

when ‖I − Q−1A‖ < 1.
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Matrix Norms

What is ‖I − Q−1A‖ ?
‖A‖1 = max16j6n

∑n
i=1 |aij|

‖A‖2 =
√
ρ(ATA)

ρ(A) = max16j6n |λi|

‖A‖2 = ρ(A) for symmetric A
‖A‖∞ = max16i6n

∑n
j=1 |aij|
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Spectral Radius Theorem
In order that the sequence generated by Qxk = (Q − A)xk−1 + b to converge,
no matter what the starting point x0 is selected, it is necessary and sufficient
that all eigenvalues of I − Q−1A lie in the open unit disc, |Z| < 1, in the
complex plane.

For any nxn matrix A having eigenvalues λi the spectral radius of A, is given
by ρ(A) = max16i6n|λi|.
The Sprctral Radius Theorem says in order to converge the spectral radius of
the iteration matrix must be less than 1. Or the absolute value of the largest
eigenvalue of the iteration matrix must be less than 1.
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Again, why do Jacobi and Gauss-Seidel work?

Jacobi, Gauss-Seidel (sufficient) Convergence Theorem
If A is diagonally dominant, then the Jacobi and Gauss-Seidel methods
converge for any initial guess x(0).

Definition: Diagonal Dominance
A matrix is diagonally dominant if

|aii| >

n∑
j=1,j,i

|aij|

for all i.
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Smart Jacobi Algorithm

The algorithm above uses the matrix representation:

x(k) = D−1(L + U)x(k−1) + D−1b

The diagonal is decoupled from the L+U, so we have an update in the form of

x(k)
i = −

n∑
j=1,j,i

(
aij

aii

)
x(k−1)

j +
bi

aii

So each sweep (from k − 1 to k) uses O(n) operations per vector element.
If, for each row i, aij = 0 for all but m values of j, each sweep uses O(mn)
operations.
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Smart Gauss-Seidel Algorithm

The algorithm above uses the matrix representation:

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b

Component-wise:

x(k)
i = −

n∑
j=1,j<i

(
aij

aii

)
x(k)

j −

n∑
j=1,j>i

(
aij

aii

)
x(k−1)

j +
bi

aii

So again each sweep (from k − 1 to k) uses O(n) operations per vector
element.
If, for each row i, aij = 0 for all but m values of j, each sweep uses O(mn)
operations.

The difference is that in the Jacobi method, updates are saved (and not used)
in a new vector. With Gauss-Seidel, an update to an element x(k)

i is used
immediately.
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Intuitively...

Both Jacobi and Gauss-Seidel can be viewed as a form of averaging.

Example
Consider

A =



2 −1
−1 2 −1

−1 2 −1
. . .

−1 2 1
−1 2


b =


0
0
0
0
0
0

 x(0) = rand(n, 1)
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Successive overrelaxation (SOR) method

Consider the Gauss-Seidel method. If we construct the next iterate for x in the
following way we have SOR method.

x(k) = (D −ωL)−1 [ωU + (1 −ω)D] x(k−1) + (D −ωL)−1ωb

Component-wise:

x(k)
i = ω

− n∑
j=1,j<i

(
aij

aii

)
x(k)

j −

n∑
j=1,j>i

(
aij

aii

)
x(k−1)

j +
bi

aii

+ (1 −ω)xk−1
i
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Conjugate Gradients

Suppose that A is n× n symmetric and positive definite.
Since A is positive definite, xTAx > 0 for all x ∈ Rn. (Why?)
Define a quadratic function

φ(x) =
1
2

xTAx − xTb

It turns out that −∇φ = b − Ax = r, or φ(x) has a minimum for x such that
Ax = b.
Optimization methods look in a “search direction” and pick the best step:

xk+1 = xk + αsk

Choose α so that φ(xk + αsk) is minimized in the direction of sk.
Find α so that φ is minimized:

0 =
d

dα
φ(xk+1) = ∇φ(xk+1)

T d
dα

xk+1 = −rT
k+1

d
dα

(xk + αsk) = −rT
k+1sk.
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Conjugate Gradients

Find α so that φ is minimized:

0 =
d

dα
φ(xk+1) = ∇φ(xk+1)

T d
dα

xk+1 = −rT
k+1

d
dα

(xk + αsk) = −rT
k+1sk.

We also know

rk+1 = b − Axk+1 = b − A(xk + αsk) = rk − αAsk

So, the optimal search parameter is

α = −
rT

k sk

sT
k Ask

This is CG: take a step in a search direction
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Conjugate Gradients

Neat trick: We can compute the r without explicitly forming b − Ax:

rk+1 = b − Axk+1 = b − A(xk + αsk) = b − Axk − αAsk = rk − αAsk
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Conjugate Gradients

How should we pick sk?
Note that −∇φ = b − Ax = r, so r is the gradient of φ (for any x), and this
is a good direction.
Thus, pick s0 = r = b − Ax0.
What is s1? This should be in the direction of r1, but conjugate to s0:
sT

1 As0 = 0.
(Two vectors u and v are A-conjugate is uTAv = 0)
So, if we let s1 = r0 + βs0, we can require

0 = sT
1 As0 = (rT

1 + βsT
0 )As0 = rT

1 As0 + βsT
0 As0

or
β = −rT

1 As0/sT
0 As0.

Holds for sk+1 in terms of rk + βksk

Further simplification (which is not simple to carry out) yields a simple
method that requires only one matrix-vector product per step:
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Conjugate Gradients

1 x0 = initial guess

2 r0 = b − Ax0

3 s0 = r0

4 for k = 0, 1, 2, . . .

5 αk =
rT
k rk

sT
k Ask

6 xk+1 = xk + αksk

7 rk+1 = rk − αkAsk

8 βk+1 = rT
k+1rk+1/rT

k rk

9 sk+1 = rk+1 + βk+1sk
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