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@ Ax=1»

@ diagonal system: O(n)

@ upper or lower triangular system: O(n?)

full system with GE: O(n?)

scaled partial pivoting adds O (n?)

full system with LU: O(n®)

LU back solve: O(n?)

m different right-hand sides: O(mn®) or O(n® + mn?)
tridiagonal system: O(n)

m-band system: O(m?n)
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So far, we are seeking “exact” solutions x* to

Ax=b
What if we only need an approximations X to x*?

We would like some % so that || X — x*|| < €, where € is some tolerance.
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We can’t actually evaluate

e=x —X
But...
For x = x*
b—Ax=0
Forx=x
b—Ax %0

We call # = b — Ax the residual. It is way to measure the error. In fact
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For a given approximation, X to x, how “big” is the residual # = b — AX?
@ ||r|| gives a magnitude

© [lrfly =Xy Iri

o il = (£y7)"”

@ [[r]leo = maxigj<a I7il

o P = Dac
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Suppose we made a wild guess to the solution x of Ax = b:

x© s x
How do | improve x(©)?
Ideally:
x(D) = 40) 4 ((0)
but to obtain e(?), we must know x. Not a viable method.
Ideally (another way):
(D) — 4(0) 4 (0
=x0 4 (x* — x(O))
=x0 4+ (A7 p— )
x4 A7 (b — Ax1Y)
=x0 4 A0



Again, the method

(D) = 0 4 4=1,(0)
is nonsense since A~ is needed.

then

What if we approximate A—'? Suppose Q' ~ A~! and is cheap to construct,
is a good step.

W = (0 4 1,0
continuing...

2®) = xk=1) | 9 1pk1)
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Rewrite:

x0) = k=1 4 QO '(b— AxF=1))
This becomes

Qx® = Qx4 (b — AxlF—1)

=(Q—A)x*D 4 p

This is the form in the text (page 322 NMCB6).
Or

B = HQ - AV Q1

=y = = = 9Dac
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Jacobi iteration approximates A with Q = diag(A).

e = 20

Q=D
for k=1 to kyu

r=>b—Ax
if ||r=b—Ax| <tol, stop

© ® N o o &~ O N =

x=x+Qlr
10 end




Gauss-Seidel iteration approximates A with Q = lowertri(A).

for k=1 to kyu
r=>b—Ax
if ||r=b—Ax| <tol, stop

© ® N o o &~ O N =

x=x+Qlr
10 end




Look again at the iteration

Looking at the error:

2®) = xk=1) | 9 1p1)

Gives

x—x® =y 1) _ Q1)
or

or

M) = olk1) _ 91 4,0-1)

e® = (I—-Q A1

M = (1—QA)e®
o = = LY
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We want

e® = (1—-Q Ay
to converge.
When does a; = c¢* converge? ....when |c| < 1

Likewise, our iteration converges

le®] = (I —Q tA)™|

<= Q Al
when |- Q74| < 1.

=} = = AP N G4
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What is || — Q'A| ?
© [|Allh = maxigj<n X1 I
o [[Al2 = /p(ATA)
@ p(A) = maxigj<n Al
@ ||All2 = p(A) for symmetric A
® [[Alleo = maxigi<n 3y laj

o = = = = 9Dac



In order that the sequence generated by Qx* = (Q — A)x*~! + b to converge,
no matter what the starting point x° is selected, it is necessary and sufficient
that all eigenvalues of I — QA lie in the open unit disc, |Z| < 1, in the
complex plane.

For any nxn matrix A having eigenvalues A; the spectral radius of A, is given
by p(A) = maxi<i<alil.

The Sprctral Radius Theorem says in order to converge the spectral radius of
the iteration matrix must be less than 1. Or the absolute value of the largest
eigenvalue of the iteration matrix must be less than 1.



If A is diagonally dominant, then the Jacobi and Gauss-Seidel methods
converge for any initial guess x(©).

A matrix is diagonally dominant if

n
il > Y lay

j=Lj#i

for all i.




The algorithm above uses the matrix representation:

O =D L+wx*Y+D "
The diagonal is decoupled from the L + U, so we have an update in the form of
n Ai: b
= — Z <l> x]-(k_l) + =
T\ i aii
j=1#i

So each sweep (from k — 1 to k) uses O(n) operations per vector element.
operations.

If, for each row i, a;; = 0 for all but m values of j, each sweep uses O(mn)



The algorithm above uses the matrix representation:

B =D-0)ux*Y+(D-L)"

Component-wise:

n n
(k) AW i\ 1) , bi
B = ) () X (B)y

a aji
j=lj<i M j=lj>i v n

So again each sweep (from k — 1 to k) uses O(n) operations per vector
element.

If, for each row i, a;; = 0 for all but m values of j, each sweep uses O(mn)
operations.

The difference is that in the Jacobi method, updates are saved (and not used)

in a new vector. With Gauss-Seidel, an update to an element x ) is used
immediately.
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Both Jacobi and Gauss-Seidel can be viewed as a form of averaging.

Consider
[ 2 —1 T '0'
-1 2 -1 0
— 2 =i 0
A= b= 0 x% = rand(n, 1)
-1 2 1 0
-1 2 0




Consider the Gauss-Seidel method. If we construct the next iterate for x in the
following way we have SOR method.
x® = (D—wL) ' [wU+ (1 —w)D)x* Y + (D — wL) wb
Component-wise:

NG

;=W [_ Z (Z_l]> x]-(k) - Z (?) x-(kil) b] + (1 —w)
j=lj<i V!
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@ Suppose that A is n x n symmetric and positive definite.
@ Since A is positive definite, xT Ax > 0 for all x € R". (Why?)
@ Define a quadratic function

d(x) = %xTAx —xTh
Ax =b.

@ ltturns out that —V¢ = b — Ax = r, or ¢(x) has a minimum for x such that

@ Optimization methods look in a “search direction” and pick the best step:
X1 = Xk + Sk

d
O_Ed)

d d
(Xk+1) = V¢(xk+1)T£xk+1 = —7’1{“%(% + osk) = —T 15k
=} = = = QR
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Choose « so that ¢ (x; + asg) is minimized in the direction of s;.
@ Find « so that ¢ is minimized:



@ Find « so that ¢ is minimized:

0= di¢(xk+l) =V (xx41)" i
[0 8

T T
X = —T¢ 15— (X + &XSg) = —71, 1Sk
To e k1 d(x( Kk 3] 15k
@ We also know

Tep1 =b— Axgy1 = b — Alxg + asg) = e — oAsg
@ So, the optimal search parameter is

o rlsy
st Asy
@ This is CG: take a step in a search direction




@ Neat trick: We can compute the r without explicitly forming b — Ax:

Tep1 = b—Axg 1 =b— A(xg + asg) = b — Axy — aAsy = 1y — aAsy

o P = Dac
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@ How should we pick s;?

@ Note that —Vd = b — Ax = r, so r is the gradient of ¢ (for any x), and this
is a good direction.

@ Thus, pick sp = r = b — Axp.

@ What is s1? This should be in the direction of 71, but conjugate to sg:
sTAsy = 0.

@ (Two vectors u and v are A-conjugate is u” Av = 0)

@ So, if we let s; = g + Bsg, we can require

0 = s Asy = (r] + Bst)Asy = r] Asy + Bsi Aso

or
B = —rlTAso /sOTASO.

@ Holds for s 1 in terms of rx + Bysy

@ Further simplification (which is not simple to carry out) yields a simple
method that requires only one matrix-vector product per step:
[m] = =

Q>



1 Xp= initial guess
2 r0=b—Axo

3 50="

4« for k=0,1,2,...

r,{ [

5 X =

s};Ask

6 Xk+1 = Xk + OGSk

7 Trpr = Tp — Ay

8 Brr1 =Ttk /1T
9 Skp1 = Tre1 + Pry1sk
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