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Applying Iterations

Beginning at the kth iteration... 2 −1 0
−1 2 −1
0 −1 2

xk
0

xk
1

xk
2

 =

b0
b1
b2



Table : Iterative Methods
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Quadratic Form

f (x) =
1
2

xTAx − bTx + c

is a quadratic form. Example:

A =

[
3 2
2 6

]
b =

[
2
−8

]
c = 0

x,y = np.meshgrid(np.linspace(-6.,6.,n),np.linspace(-6.,6.,n))

z = f(x,y,n)

im = plt.imshow(z,cmap=plt.cm.RdBu)

cset = plt.contour(z,np.arange(-10.,300.,20.0),linewidths=2,

cmap=plt.cm.Set2)

plt.clabel(cset,inline=True,fmt=’%1.1f’,fontsize=10)

plt.colorbar(im) # adding the colobar on the right
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Quadratic Form
Gradient: ∇f (x) points uphill
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Quadratic Form

Lets look at the ith component of ∇f :

f (x + hei) =
1
2
(x + hei)

TA(x + hei) − bT(x + hei) + c

≈ 1
2
(xTAx + heT

i Ax + xTAhei) − bT(x + hei) + c

so

f (x + hei) − f (x)
h

=
1
2 (heT

i Ax + xTAhei) − heT
i b

h

= ith component of
1
2
(Ax + ATx) − b

So
∇f =

1
2

ATx +
1
2

Ax − b

So if A is symmetric, then Ax = b at the minimum of f .
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Quadratic Form

So
∇f =

1
2

ATx +
1
2

Ax − b

So if A is symmetric, then Ax = b at the minimum of f . Now, if

A is positive definite, f is concave up.
A is negative definite, f is concave down.
A is positive semi-definite, f is concave up (with a line as the minimum).
A is indefinite, f has a saddle. (Think x2

1 − x2
2)
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Conjugate Gradients

Suppose that A is n× n symmetric and positive definite.
Since A is positive definite, xTAx > 0 for all x ∈ Rn.
Define a quadratic function

f (x) =
1
2

xTAx − xTb

It turns out that −∇f = b − Ax = r
Optimization methods look in a “search direction” and pick the best step:

xk+1 = xk + αsk

Choose α so that f (xk + αsk) is minimized in the direction of sk.
Find α so that f is minimized:

0 =
d

dα
f (xk+1) = ∇f (xk+1)

T d
dα

xk+1 = −rT
k+1

d
dα

(xk + αsk) = −rT
k+1sk.
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Steepest Descent

Find α so that f is minimized in the direction of ∇f = r:

0 =
d

dα
f (xk+1) = ∇f (xk+1)

T d
dα

xk+1 = −rT
k+1

d
dα

(xk + αrk) = −rT
k+1rk.

Pick α so that ∇f (xk+1) and rk are orthogonal.
Since ∇f (xk+1) = −rk+1 we want

rT
k+1rk = 0

(b − A(xk + αrk))
Trk = 0

(b − Axk)
Trk − α(Ark)

Trk = 0

rT
k rk = αrT

k Ark

So, the optimal search parameter is

α = −
rT

k rk

rT
k Ark
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So far, we’ve motivated a method. We haven’t been careful about the step
direction sk yet.

Notice: convergence is staggered

Better: step toward a principle axis
Notice: axis defined by eigenvectors of A
Compromise: find a step direction that is A-orthogonal to the previous
Notice: take a search closest to r that is conjugate.
Result: converges in at most n steps
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Conjugate Gradients

1 x0 = initial guess

2 r0 = b − Ax0

3 s0 = r0

4 for k = 0, 1, 2, . . .

5 αk =
rT
k rk

sT
k Ask

6 xk+1 = xk + αksk

7 rk+1 = rk − αkAsk

8 βk+1 = rT
k+1rk+1/rT

k rk

9 sk+1 = rk+1 + βk+1sk
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Convergence

A-norm of the error is minimized in each step
Bound:

‖ek‖A 6 2
( √

κ− 1√
κ+ 1

)k

‖e0‖A

κ is the condition number
for symmetric matrices, κ = λmax

λmin
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Preconditioning

We’ve seen iterations that replace A with a matrix Q such that Q−1A
resembles the identity matrix. Conjugate Gradient takes a different approach
and solves Ax = b more directly.
Can we combine these ideas?
Preconditioning is transforming the original problem Ax = b with another
matrix Q and then solving that modified problem. For example

Left Preconditioning: QAx = Qb
Right Preconditioning: AQw = b, Qw = x
Symmetric preconditioning: QTAQw = QTb, Qw = x

For Conjugate Gradient, the matrix must be symmetric, so the last form is the
most common.
There are methods that generalize conjugate gradient for nonsymmetric
matrices. See CS 457 for more details
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Coming Up

Google, Markov Chains, intro to Monte Carlo Simulations
Eigenvalues: SVD, Power Method
Least-Squares
Monte Carlo Simulations
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Random Process

Goal: model a random process in which a system transitions from one
state to another at discrete time steps.
At each time, say there are n states the system could be in.
At time k, we model the system as a vector xk ∈ <n (whose entries
represent the probability of being in each of the n states).
Here, k = 0, 1, 2, · · · , and the ”initial state” is x0.

Definition
A probability vector is a vector in <n whose entries are nonnegative and sum
to 1.
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Markov Chains

Markov chains can model the behavior of a system that depends only on
the previous experiment or state.
That is, the next state of the system depends only on the current state
where the outcome of each experiment is one of a discrete set of states.
Markov chains require a transition matrix, P, where P(j, i) equals the
probability of going from state i to state j.
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Markov chain model of a Broken Machine

A certain office machine has three states: Working, Temporarily Broken, and
Permanently Broken. Each day it is in one of these states. The transition
diagram between the states is shown below.

0.9 0.4

0

0.6

0.05 0
0

1

0.095

state 1

state 3

state 2

On any particular day the probability that the machine is in any particular state
is given by the probability vector.

xk =

p0
p1
p2
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Markov chain model of a Broken Machine

Given the transition diagram, the probability that the machine will be in a
particular state on a subsequent day is.

xk+1 =

 .9 .6 0
.095 .4 0
.005 0 1

p0
p1
p2


Therefore, the transition matrix is:

P =

 .9 .6 0
.095 .4 0
.005 0 1
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Markov chain model of a Broken Machine

Let us say the initial state is the machine is working.

x0 =

1
0
0


The probability that it will be in any particular state on day 2 is

xk+1 =

 .9 .6 0
.095 .4 0
.005 0 1

1
0
0

 =

 .9
.095
.005


And in a year the probability that the machine will be in any particular state is: .9 .6 0

.095 .4 0

.005 0 1

365 1
0
0

 =

0.1779
0.0284
0.7937
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Markov chain model of a Broken Machine

We see that the probability that the machine is permanently broken in 0.7937
and so there is about a 21% chance that the machine is still functional.

Definition
A Markov matrix is a square matrix M whose columns are probability vectors.

Definition
A Markov chain is a sequence of probability vectors x0, x1, x2, · · · such that
xk+1 = Mxk for some Markov matrix M.
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Mardov chain model of a Broken Machine

For this Markov chain the steady state solution is the vector v = [0 0 1] ′, as we
can see by computing the eigenvalues and eigenvectors. That is, Pv = v.

State 3 (Permanently Broken) is called an absorbing state. No matter what
state we start in, we will eventually end up in State 3 with probability 1, and
once in State 3 we can never leave.
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steady state

Theorem
If M is a Markov matrix, there exists a vector x , 0 such that Mx = x.

Perron-Frobenius Theorem
If M is a Markov matrix with all positive entries, then M has a unique
steady-state vector, x. if x0 is any initial state, then xk = Mkx0 converges to x
as k→∞.
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Randomly Walking with Google

start at any webpage
randomly select a link and follow
repeat
what are the outcomes?

The outcomes of such a random walk are:
a dead end on a page with no outgoing links
a cycle where you end up where you began: known as a Markov chain or
Markov process.
The limiting probability that an infinitely dedicated random surfer visits
any particular page is its PageRank.
A page has high rank if other pages with high rank link to it.
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Random Walking with Google

Let W be the set of Web pages that can reached by following a chain of
hyperlinks starting from a page at Google.
Let n be the number of pages in W.
The set W actually varies with time, by the end of 2005, n was over 10
billion.
Let G be the n× n connectivity matrix of W, that is, Gi,j is 1 if there is a
hyperlink from page i to page j and 0 otherwise.
The matrix G is huge, but very sparse; its number of nonzeros is the total
number of hyperlinks in the pages in W.
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Google and Probability

Let cj and ri be the column and row sums of G, respectively. That is,

cj =
∑

i

Gi,j, ri =
∑

j

Gi,j

Then ck and rk are the indegree and outdegree of the k-th page. In other
words, ck is the number of links into page k and rk is the number of links
from page k.
Let p be the fraction of time that the random walk follows a link.
Google typically takes this to be p = 0.85.
Then 1 − p is the fraction of time that an arbitrary page is chosen.
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Google meets Markov

Let A be an n× n matrix whose elements are Ai,j = pGi,j/cj + δ where
δ = (1 − p)/n.
This matrix is the transition matrix of the Markov chain of a random walk!
Notice that A comes from scaling the connectivity matrix by its column
sums.
The j-th column is the probability of jumping from the j-th page to the
other pages on the Web.
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The problem

Can write A, the transition matrix, as

A = pGD + ezT

where e is the vector of all ones and where ezT account for dead linked pages
and

Djj = 1/cj (or 0) zj = δ (or 1/n)

Then x = Ax can be written

(I − pGD)x = (zTx)e = γe

and we can scale x such that γ = 1
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Eigenvectors and Google

Find x = Ax and the elements of x are Google’s PageRank. Remember
n > 1010 (as of 2005) and growing.

For any particular query, Google finds pages on the Web that match the
query. The pages are then listed in the order of their PageRank.

David Semeraro (NCSA) CS 357 November 12, 2013 27 / 29



Numerics?

what does this have to do with numerical methods?
large sparse matrices (although Google avoids this)
solution to a linear system (eigenvalue problem)
Markov chains...

The Markov process is important.
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Why

Central to the PageRank (and many many other applications in finance,
science, informatics, etc) is that we randomly process something
what we want to know is “on average” what is likely to happen
what would happen if we have an infinite number of samples?
next: eigenvalues, SVD, pagerank, Monte Carlo

David Semeraro (NCSA) CS 357 November 12, 2013 29 / 29


