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Recall in interpolation we wanted to find a curve that went through all of the
data points.

Suppose we are given the data {(x1,y1), ..., (x4, ¥»)} and we want to find a
curve that best fits the data.
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Given n data points {(x1, yi), ..., (x4, ¥»)} find a and b such that

yi=ax;+b Vie[l,nl.

In matrix form, find a and b that solves



If A'is an m x n matrix, then in general, an m x 1 vector b may not lie in the
column space of A. Hence Ax = b may not have an exact solution.

The residual vector is

r=>b— Ax.

The least squares solution is given by minimizing the square of the residual
in the 2-norm.
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following function

Writing r = (b — Ax) and substituting, we want to find an x that minimizes the
o) =B =rTr=(b—Ax)T(b— Ax) = b"b — 2xTATb + xT AT Ax

From calculus we know that the minimizer occurs where Vi (x) =0
The derivative is given by

Vo(x) = —2ATh+2ATAx =0

The system of normal equations is given by

ATAx = ATh.
=
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Since the normal equations forms a symmetric system, we can solve by
computing the Cholesky factorization

ATA=LLT
and solving Ly = ATb and LTx = y.
1 1
e 0
0 €

where 0 < € < /€,.:- The normal equations for this system is given by

oo lve 1] 1
AA—[1 1+ 711

Consider

A:




The normal equations tend to worsen the condition of the matrix.

cond(ATA) = (cond(A))?

1+ >> A = rand(10,10);
2 >> cond(A)

3 43.4237

4 >> cond(A’*A)

5 1.8856e+03

How can we solve the least squares problem without squaring the condition of
the matrix?
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@ QR factorization.
» For A € R™*", factor A = QR where

* QQis anm x m orthogonal matrix
* Ris anm x n upper triangular matrix (since R is an m x n upper triangular
/

matrix we can write R = IE) where R is n x n upper triangular and 0 is the

(m —n) x n matrix of zeros)

@ SVD - singular value decomposition
» For A € R™*", factor A = USVT where

* U is an m x m orthogonal matrix
* Vis ann x n orthogonal matrix
* Sis anm x n diagonal matrix whose elements are the singular values.




A matrix Q is orthogonal if

Q'Q=0QQ" =1

Orthogonal matrices preserve the Euclidean norm of any vector v,

1Qull3 = (Qv)"(Qu) =v"Q"Qu = vv = |lvl3.



Now that we know orthogonal matrices preserve the euclidean norm, we can
the residual.

apply orthogonal matrices to the residual vector without changing the norm of
R
I = 1o~ axlg = [s— 0 [§]
If Q"p = {Cl] and x = {xl} then
Co X2
Joro= [, =) TS 1 -1
0 0 Cy 0 o Co 5

= ller — R[5 + ez 3
Hence the least squares solution is given by solving 0 [

RElal Z 1 we can
X2 o C2 )
solve Rx; = c; using back substitution and the residual is ||r|l> = |lc2]l2.
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One way to obtain the QR factorization of a matrix A is by Gram-Schmidt
orthogonalization.

We are looking for a set of orthogonal vectors g that span the range of A.

For the simple case of 2 vectors {a1, a5}, first normalize a; and obtain

o=
1=
[la |

Now we need g, such that qquz =0and g, =ax+cq;. That is,
R(q1,92) = R(ay,az)

Enforcing orthogonality gives:

d192 =0 = qiaz + cqi g
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9192 =0 = qiaz + cqi g1
Solving for the constant c.

T
)

g1
reformulating g, gives.

ELE
Adding another vector a3 and we have for g3,

T T
g5 = a3 — 9293 7193

i g

Repeating this idea for n columns gives us Gram-Schmidt orthogonalization.
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Since R is upper triangular and A = QR we have
ay

q1711
as

q1r12 + gatn

a, =
From this we see that r;; =

G171 + Q220 + o + Gulun
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The orthogonal projector onto the range of 4; can be written:

Qa1
T

. Application of this operator to a vector a orthogonally projects a onto g;. If we
subtract the result from a we are left with a vector that is orthogonal to g;.

T G191
(I—=")a=0
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1+ function [Q,R] = gs_qr (A)

2

sm = size(A,1);

4+ n = size(A,2);

5

6 for i = 1:n

7 R(i,i) = norm(A(:,1),2);

8 QC:,i) = A(C:,1)./R(i,1i);

9 for j = i+l:n

10 R(i,j) = QC:,i)” * A(C:,3);
1 AC:,j) = AC:,3) - R(1,3)*QC:,1);
12 end

13 end

14

15 end
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Recall that a singular value decomposition is given by

01

where o; are the singular values.
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Assume that A has rank k (and hence k nonzero singular values o;) and recall
that we want to minimize

lI7ll3 = lIb — Ax]}3.
Substituting the SVD for A we find that

713 = IIb — Axll3 = Ilb— USV |3
values.

where U and V are orthogonal and S is diagonal with k nonzero singular

b —Uusvix|3 = [U"s — UTUSV x|3 = |U"b — SV x|3



Letc=UTbhand y = V'x (and hence x = V) in ||lUTh — SVTx|[32. We now have

2
17115 = llc — Syli3
Since S has only k nonzero diagonal elements, we have

k n
MG =) (ci—ow)*+ > ¢
i=1 i=k+1
which is minimized when y;

%forlgigk.



Let A be an m x n matrix of rank r and let A = USVT, the singular value
decomposition. The least squares solution of the system Ax =b is

r

x=Y (o7 c)o;

i=1

where c; = ulb.




