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Markov Application

We consider a light weight version of computing a realistic BCS ranking.One
difficult aspect of the BCS rankings for college football is that not every team
plays each other.

Consider a simpler version of ranking Big Ten teams after the first four
weeks of play.
Not every team has played each other (or even played another Big Ten
Team).
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Markov Application

Consider the following games:

Michigan 16 Purdue 13
Iowa 38 Wisconsin 17
Iowa 28 Illinois 23
Minnesota 34 Michigan 21
Minnesota 23 Purdue 10
Purdue 31 Michigan 6
Wisconsin 33 Illinois 25
Wisconsin 38 Purdue 23
Illinois 27 Iowa 6
Illinois 20 Wisconsin 12
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Markov Application

The adjacency matrix for this problem is:

Ai,j =

{
wi,j team i beats team j
0 otherwise

where wi,j is the absolute value of the difference between scores. Order the
teams 1-Michigan, 2-Iowa, 3-Minnesota, 4-Purdue, 5-Wisconsin, 6-Illinois.
Now, w1,3 represents a victory by Michigan over Minnesota by the amount
assigned to w1,3.
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Markov Application

As with the Google matrix we need the column sums to be one (to guarantee
values of the eigenvector to be in [0, 1]), so let

Hi,j =
1∑n

k=1 Ak,j
Ai,j

where we ignore any zero columns.
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Markov Application

With this we have

A =


0 0 0 3 0 0
0 0 0 0 21 5

13 0 0 13 0 0
25 0 0 0 0 0
0 0 0 15 0 8
0 21 0 0 8 0


and

H =


0 0 0 3/31 0 0
0 0 0 0 21/29 5/13

13/38 0 0 13/31 0 0
25/38 0 0 0 0 0

0 0 0 15/31 0 8/13
0 1 0 0 8/29 0

 .
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Markov Application

Teams that are undefeated have zero columns in H. We transform H into a
stochastic matrix (columns add to 1) by performing a rank-1 update:

H← H + uaT.

Letting a be 1 for undefeated teams and 0 otherwise and u be 1/6 we have

a = [0 0 1 0 0 0]T u = (1/6)[1 1 1 1 1 1]T

Thus

H + uaT =


0 0 1/6 3/31 0 0
0 0 1/6 0 21/29 5/13

13/38 0 1/6 13/31 0 0
25/38 0 1/6 0 0 0

0 0 1/6 15/31 0 8/13
0 1 1/6 0 8/29 0

 .

Now entry i of column j for H + uaT is the probability that team j will lose to
team i.
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Markov Application
As with PageRank, we have a probability parameter α = 0.85. In the BCS
rankings, this would correspond to the likelihood that a voter would change
their vote based on a loss to a higher ranked team. The final Google-like
matrix is then

G = α(H + uaT) + (1 − α)(1/6)eeT

or

G = 0.85


0 0 1/6 3/31 0 0
0 0 1/6 0 21/29 5/13

13/38 0 1/6 13/31 0 0
25/38 0 1/6 0 0 0

0 0 1/6 15/31 0 8/13
0 1 1/6 0 8/29 0



+0.15(1/6)


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1


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Markov Application

Applying the power method to the matrix G gives the team rankings. The
number one team corresponds to the largest element of the eigenvector. After
20 iterations beginning with a random vector the normalized eigenvector is:

0.0780
0.5663
0.1315
0.1124
0.4590
0.6577

→


Illinois
Iowa

Wisconsin
Minnesota

Purdue
Michigan


This shows that the team listed in position six has the largest component and
it therefore first in the ranking.
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Why

Central to the PageRank (and many many other applications in finance,
science, informatics, etc) is that we randomly process something
what we want to know is “on average” what is likely to happen
what would happen if we have an infinite number of samples?
let’s take a look at integral (a discrete limit in a sense)

David Semeraro (NCSA) CS 357 November 19, 2013 10 / 32



Integration

integral of a function over a domain∫
x∈D

f (x) dAx

the size of a domain
AD =

∫
x∈D

dAx

average of a function over some domain∫
x∈D f (x)dAx

AD
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integral example

The average “daily” snowfall in Champaign last year
domain: year (1d time interval)
integration variable: day
function: snowfall depending on day

average =

∫
day∈year s(day)dday

lengthofyear
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integral example

The average snowfall in Illinois
domain: Illinois (2d surface)
integration variable: (x, y) location
function: snowfall depending on location

average =

∫
location∈Illinois s(location)dlocation

areaofIllinois
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integral example

The average snowfall in Illinois today
domain: Illinois × year (3d space-time)
integration variable: location and day
function: snowfall depending on location and day

average =

∫
day∈year

∫
location∈Illinois s(location, day)dlocation,day

areaofIllinois · lengthofyear
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discrete random variables

random variable x
values: x0, x1, . . . , xn

probabilities p0, p1, . . . , pn with
∑n

i=0 pi = 1

throwing a die (1-based index)
values: x1 = 1, x2 = 2, . . . , x6 = 6
probabilities pi = 1/6
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expected value and variance

expected value: average value of the variable

E[x] =
n∑

j=1

xjpj

variance: variation from the average

σ2[x] = E[(x − E[x])2] = E[x2] − E[x]2

throwing a die
expected value: E[x] = (1 + 2 + · · ·+ 6)/6 = 3.5
variance: σ2[x] = 2.916
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estimated E[x]

to estimate the expected value, choose a set of random values based on
the probability and average the results

E[x] =
1
N

N∑
j=1

xi

bigger N gives better estimates

throwing a die
3 rolls: 3, 1, 6→ E[x] ≈ (3 + 1 + 6)/3 = 3.33
9 rolls:
3, 1, 6, 2, 5, 3, 4, 6, 2→ E[x] ≈ (3 + 1 + 6 + 2 + 5 + 3 + 4 + 6 + 2)/9 = 3.51
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law of large numbers

by taking N to∞, the error between the estimate an the expected value is
statistically zero. That is, the estimate will converge to the correct value

P

(
E[x] = limN→∞ 1

N

N∑
i=1

xi

)
= 1
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(deterministic) numerical integration

split domain into set of fixed segments
sum function values with size of segments (Riemann!)
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Algorithm

Consider the MVT for integrals:∫ b

a
f (x) dx = f (c)(b − a)

Where f (c) is the average value of f in [a, b].
We have for a random sequence x1, . . . , xn∫ 1

0
f (x) dx ≈ 1

n

n∑
i=1

f (xi)

1 n=100;

2 x=rand(n,1);

3 a=f(x);

4 s=sum(a)/n;
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1D Integration

Given the previous expression for the average of a function on an interval we
can evaluate through the MVT the value of an integral using random values.
For example, the following python program evaluates

∫1
0 x2 dx.

1 import numpy as np

2 n = 10000

3 x = np.random.rand(n)

4 fx = sum(x*x)

5 print fx/n

The value arrived at for n = 10000 is 0.33546. Not terribly accurate but not
bad.
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2d: example computing π

Use the unit square [0, 1]2 with a quarter-circle

f (x, y) =

{
1 (x, y) ∈ circle
0 else

Aquarter−circle =

∫ 1

0

∫ 1

0
f (x, y) dxdy =

pi
4
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2d: example computing π

Estimate the area of the circle by randomly evaluating f (x, y)

Aquarter−circle ≈
1
N

N∑
i=1

f (xi, yi)
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2d: example computing π

By definition

Aquarter−circle = π/4

so

π ≈ 4
N

N∑
i=1

f (xi, yi)
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2d: example computing π, algorithm

1 input N
2 call rand in 2d
3 for i=1:N
4 sum = sum + f (xi, yi)
5 end

6 sum = 4 ∗ sum/N
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2d: example computing π, algorithm

The expected value of the error is O
(

1√
N

)
convergence does not depend on dimension
deterministic integration is very hard in higher dimensions
deterministic integration is very hard for complicated domains
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MVT in higher dimensions

Notice that the average of f over a region is obtained by integrating and
dividing by the area, volume, or measure of that region. For example:

1
8

∫ 3

1

∫ 1

−1

∫ 2

0
f (x, y, z) dxdydz

is the average of f over the parallelepiped descrived by the following
inequalities: 0 6 x 6 2, −1 6 y 6 1, and 1 6 z 6 3.
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Surface integral (example from book)

Solve: ∫ ∫
Ω

sin
√

ln(x + y + 1) dxdy =

∫ ∫
Ω

f (x, y) dxdy

over the disk in xy-space defined by the inequality:

Ω =

{
(x, y) :

(
x −

1
2

)2

+

(
y −

1
2

)2

6
1
4

}
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Surface Integral

Generate 5000 random points pi = (xi, yi)

Discard points outside the disk

Estimate the integral by:∫ ∫
Ω

f (x, y) dxdy = (area of diskΩ) ∗ (average height of f over n random points)

= (πr2)

[
1
n

n∑
i=1

f (pi)

]

=
π

4n

n∑
i=1

f (pi)
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Surface Integral

1 import numpy as np

2 import math

3 def f(x,y):

4 temp = math.sqrt(math.log((x + y + 1.0)))

5 return math.sin(temp)

6 n = 5001

7 iprt = 10

8 j = 0

9 sum = 0.0

10 x = np.random.rand(n)

11 y = np.random.rand(n)

12 for i in range(n):

13 if (( (x[i] - 0.5)**2 + (y[i] - 0.5)**2 ) <= 0.25 ):

14 j = j + 1

15 sum = sum + f(x[i],y[i])

16 if (j % iprt == 0):

17 vol = math.pi*sum*0.25/j

18 print j, vol

19 vol = math.pi*sum*0.25/j

20 print j,vol
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Surface Integral

j average integral
1000 0.723674995939 0.568373012707
2000 0.722805639908 0.567690222077
3000 0.722887515293 0.567754526854

3953 0.567452566273
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Stochastic Simulation
From M. Heath, Scientific Computing, 2nd ed., CS450

Stochastic simulation mimics physical behavior through random
simulations
...also known as Monte Carlo method (no single MC method!)
Usefulness:

I nondeterministic processes
I deterministic models that are too complicated to model
I deterministic models with high dimensionality

http://www.cse.uiuc.edu/iem/integration/mntcurve/

http://www.cse.uiuc.edu/iem/integration/mntcirc/
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