

David Semeraro

University of Illinois at Urbana-Champaign

November 19, 2013

We consider a light weight version of computing a realistic BCS ranking.One difficult aspect of the BCS rankings for college football is that not every team plays each other.

- Consider a simpler version of ranking Big Ten teams after the first four weeks of play.
- Not every team has played each other (or even played another Big Ten Team).

Consider the following games:

-

Michigan	16	Purdue	13
lowa	38	Wisconsin	17
lowa	28	Illinois	23
Minnesota	34	Michigan	21
Minnesota	23	Purdue	10
Purdue	31	Michigan	6
Wisconsin	33	Illinois	25
Wisconsin	38	Purdue	23
Illinois	27	lowa	6
Illinois	20	Wisconsin	12

-

Image: A math the state of t

The adjacency matrix for this problem is:

$$A_{i,j} = egin{cases} w_{i,j} & ext{team} \ i \ ext{beats team} \ j \ 0 & ext{otherwise} \end{cases}$$

where $w_{i,j}$ is the absolute value of the difference between scores. Order the teams 1-Michigan, 2-Iowa, 3-Minnesota, 4-Purdue, 5-Wisconsin, 6-Illinois. Now, $w_{1,3}$ represents a victory by Michigan over Minnesota by the amount assigned to $w_{1,3}$.

As with the Google matrix we need the column sums to be one (to guarantee values of the eigenvector to be in [0, 1]), so let

$$H_{i,j} = \frac{1}{\sum_{k=1}^{n} A_{k,j}} A_{i,j}$$

where we ignore any zero columns.

Markov Application

With this we have

$$A = \begin{bmatrix} 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21 & 5 \\ 13 & 0 & 0 & 13 & 0 & 0 \\ 25 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 15 & 0 & 8 \\ 0 & 21 & 0 & 0 & 8 & 0 \end{bmatrix}$$
$$H = \begin{bmatrix} 0 & 0 & 0 & 3/31 & 0 & 0 \\ 0 & 0 & 0 & 0 & 21/29 & 5/13 \\ 13/38 & 0 & 0 & 13/31 & 0 & 0 \\ 25/38 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 15/31 & 0 & 8/13 \\ 0 & 1 & 0 & 0 & 8/29 & 0 \end{bmatrix}$$

and

-

E

.

<ロト < 回ト < 回ト

Teams that are undefeated have zero columns in H. We transform H into a *stochastic matrix* (columns add to 1) by performing a rank-1 update:

$$H \leftarrow H + ua^T$$
.

Letting a be 1 for undefeated teams and 0 otherwise and u be 1/6 we have

$$a = [0 0 1 0 0 0]^T$$
 $u = (1/6)[1 1 1 1 1 1]^T$

Thus

$$H + ua^{T} = \begin{bmatrix} 0 & 0 & 1/6 & 3/31 & 0 & 0 \\ 0 & 0 & 1/6 & 0 & 21/29 & 5/13 \\ 13/38 & 0 & 1/6 & 13/31 & 0 & 0 \\ 25/38 & 0 & 1/6 & 0 & 0 & 0 \\ 0 & 0 & 1/6 & 15/31 & 0 & 8/13 \\ 0 & 1 & 1/6 & 0 & 8/29 & 0 \end{bmatrix}$$

Now entry *i* of column *j* for $H + ua^T$ is the probability that team *j* will lose to team *i*.

Markov Application

As with PageRank, we have a probability parameter $\alpha = 0.85$. In the BCS rankings, this would correspond to the likelihood that a voter would change their vote based on a loss to a higher ranked team. The final Google-like matrix is then

$$G = \alpha(H + ua^T) + (1 - \alpha)(1/6)ee^T$$

or

Applying the power method to the matrix G gives the team rankings. The number one team corresponds to the largest element of the eigenvector. After 20 iterations beginning with a random vector the normalized eigenvector is:

0.0780		[Illinois]
0.5663		Iowa
0.1315		Wisconsin
0.1124	\rightarrow	Minnesota
0.4590		Purdue
0.6577		Michigan

This shows that the team listed in position six has the largest component and it therefore first in the ranking.

- Central to the PageRank (and many many other applications in finance, science, informatics, etc) is that we randomly process something
- what we want to know is "on average" what is likely to happen
- what would happen if we have an infinite number of samples?
- let's take a look at integral (a discrete limit in a sense)

• integral of a function over a domain

$$\int_{x\in D} f(x) \, dA_x$$

the size of a domain

$$A_D = \int_{x \in D} dA_x$$

• average of a function over some domain

$$\frac{\int_{x \in D} f(x) dA_x}{A_D}$$

The average "daily" snowfall in Champaign last year

- domain: year (1d time interval)
- integration variable: day
- function: snowfall depending on day

$$average = rac{\int_{day \in year} s(day) d_{day}}{lengthofyear}$$

The average snowfall in Illinois

- domain: Illinois (2d surface)
- integration variable: (x, y) location
- function: snowfall depending on location

$$average = rac{\int_{location \in Illinois} s(location) d_{location}}{area of Illinois}$$

The average snowfall in Illinois today

- domain: Illinois × year (3d space-time)
- integration variable: location and day
- function: snowfall depending on location and day

 $average = rac{\int_{day \in year} \int_{location \in IIlinois} s(location, day) d_{location, day}}{area of Illinois \cdot length of year}$

- random variable *x*
- values: *x*₀, *x*₁, . . . , *x_n*
- probabilities p_0, p_1, \ldots, p_n with $\sum_{i=0}^n p_i = 1$

throwing a die (1-based index)

- values: $x_1 = 1, x_2 = 2, \dots, x_6 = 6$
- probabilities $p_i = 1/6$

expected value: average value of the variable

$$E[x] = \sum_{j=1}^{n} x_j p_j$$

variance: variation from the average

$$\sigma^{2}[x] = E[(x - E[x])^{2}] = E[x^{2}] - E[x]^{2}$$

throwing a die

- expected value: $E[x] = (1 + 2 + \dots + 6)/6 = 3.5$
- variance: $\sigma^2[x] = 2.916$

 to estimate the expected value, choose a set of random values based on the probability and average the results

$$E[x] = \frac{1}{N} \sum_{j=1}^{N} x_i$$

bigger N gives better estimates

throwing a die • 3 rolls: $3, 1, 6 \rightarrow E[x] \approx (3+1+6)/3 = 3.33$ • 9 rolls: $3, 1, 6, 2, 5, 3, 4, 6, 2 \rightarrow E[x] \approx (3+1+6+2+5+3+4+6+2)/9 = 3.51$

• □ ▶ • □ ▶ • □ ▶

 by taking N to ∞, the error between the estimate an the expected value is statistically zero. That is, the estimate will converge to the correct value

$$P\left(E[x] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i\right) = 1$$

(deterministic) numerical integration

- split domain into set of fixed segments
- sum function values with size of segments (Riemann!)

Algorithm

Consider the MVT for integrals:

$$\int_{a}^{b} f(x) \, dx = f(c)(b-a)$$

Where f(c) is the average value of f in [a, b]. We have for a random sequence x_1, \ldots, x_n

$$\int_0^1 f(x) \, dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

n = 100;

$$x = rand(n, 1);$$

4
$$s=sum(a)/n;$$

Given the previous expression for the average of a function on an interval we can evaluate through the MVT the value of an integral using random values. For example, the following python program evaluates $\int_{0}^{1} x^{2} dx$.

```
i import numpy as np
n = 10000
x = np.random.rand(n)
fx = sum(x*x)
print fx/n
```

The value arrived at for n = 10000 is 0.33546. Not terribly accurate but not bad.

2d: example computing π

Use the unit square $[0, 1]^2$ with a quarter-circle

$$f(x,y) = \begin{cases} 1 & (x,y) \in circle \\ 0 & else \end{cases}$$
$$A_{quarter-circle} = \int_0^1 \int_0^1 f(x,y) \, dx \, dy = \frac{pi}{4}$$

2d: example computing π

Estimate the area of the circle by randomly evaluating f(x, y)

$$A_{quarter-circle} pprox rac{1}{N} \sum_{i=1}^{N} f(x_i, y_i)$$

2d: example computing π

By definition

$$A_{quarter-circle} = \pi/4$$

S0

$$\pi pprox rac{4}{N} \sum_{i=1}^{N} f(x_i, y_i)$$

1

590

<ロト < 回 > < 回 > < 回 > -

```
input N
call rand in 2d
for i=1:N
sum = sum + f(x<sub>i</sub>, y<sub>i</sub>)
end
sum = 4 * sum/N
```

The expected value of the *error* is $O\left(\frac{1}{\sqrt{N}}\right)$

- convergence does not depend on dimension
- deterministic integration is very hard in higher dimensions
- deterministic integration is very hard for complicated domains

Notice that the average of f over a region is obtained by integrating and dividing by the area, volume, or measure of that region. For example:

$$\frac{1}{8} \int_{1}^{3} \int_{-1}^{1} \int_{0}^{2} f(x, y, z) \, dx \, dy \, dz$$

is the average of f over the parallelepiped descrived by the following inequalities: $0 \le x \le 2, -1 \le y \le 1$, and $1 \le z \le 3$.

Solve:

$$\iint_{\Omega} \sin \sqrt{\ln(x+y+1)} \, dx dy = \iint_{\Omega} f(x,y) \, dx dy$$

over the disk in xy-space defined by the inequality:

$$\Omega = \left\{ (x,y) : \left(x - \frac{1}{2} \right)^2 + \left(y - \frac{1}{2} \right)^2 \leqslant \frac{1}{4} \right\}$$

I Dace E

- Generate 5000 random points $p_i = (x_i, y_i)$
- Discard points outside the disk

Estimate the integral by:

 $\iint_{\Omega} f(x, y) \, dx \, dy = (area \, of \, disk \, \Omega) * (average \, height \, of \, f \, over \, n \, random \, points)$ $= (\pi r^2) \left[\frac{1}{n} \sum_{i=1}^n f(p_i) \right]$ $= \frac{\pi}{4n} \sum_{i=1}^n f(p_i)$

Surface Integral

```
import numpy as np
2 import math
_3 def f(x,y):
     temp = math.sqrt(math.log((x + y + 1.0)))
4
     return math.sin(temp)
5
n = 5001
_{7} iprt = 10
8 i = 0
9 \, \text{sum} = 0.0
10 x = np.random.rand(n)
y = np.random.rand(n)
12 for i in range(n):
      if (( (x[i] - 0.5)**2 + (y[i] - 0.5)**2 ) <= 0.25 ):</pre>
13
          i = i + 1
14
          sum = sum + f(x[i], y[i])
15
          if (j % iprt == 0):
16
               vol = math.pi*sum*0.25/j
17
               print j, vol
18
19 vol = math.pi*sum*0.25/j
20 print j,vol
```

j average integral 1000 0.723674995939 0.568373012707 2000 0.722805639908 0.567690222077 3000 0.722887515293 0.567754526854

3953 0.567452566273

Stochastic Simulation

From M. Heath, *Scientific Computing*, 2nd ed., CS450

- Stochastic simulation mimics physical behavior through random simulations
- ...also known as Monte Carlo method (no single MC method!)
- Usefulness:
 - nondeterministic processes
 - deterministic models that are too complicated to model
 - deterministic models with high dimensionality

http://www.cse.uiuc.edu/iem/integration/mntcurve/ http://www.cse.uiuc.edu/iem/integration/mntcirc/