
Lecture 24
Monte Carlo

David Semeraro

University of Illinois at Urbana-Champaign

November 21, 2013

David Semeraro (NCSA) CS 357 November 21, 2013 1 / 28

expected value and variance

expected value: average value of the variable

E[x] =
n∑

j=1

xjpj

variance: variation from the average

σ2[x] = E[(x − E[x])2] = E[x2] − E[x]2

throwing a die
expected value: E[x] = (1 + 2 + · · ·+ 6)/6 = 3.5
variance:
1
6

[
(1 − 3.5)2 + (2 − 3.5)2 + (3 − 3.5)2 + (4 − 3.5)2 + (5 − 3.5)2 + (6 − 3.5)2

]
variance: σ2[x] = 2.916

David Semeraro (NCSA) CS 357 November 21, 2013 2 / 28

estimated E[x]

to estimate the expected value, choose a set of random values based on
the probability and average the results

E[x] =
1
N

N∑
j=1

xi

bigger N gives better estimates

throwing a die
3 rolls: 3, 1, 6→ E[x] ≈ (3 + 1 + 6)/3 = 3.33
9 rolls:
3, 1, 6, 2, 5, 3, 4, 6, 2→ E[x] ≈ (3 + 1 + 6 + 2 + 5 + 3 + 4 + 6 + 2)/9 = 3.51

David Semeraro (NCSA) CS 357 November 21, 2013 3 / 28

law of large numbers

by taking N to ∞, the error between the estimate an the expected value is
statistically zero. That is, the estimate will converge to the correct value

P(E[x] = limN→∞ 1
N

N∑
i=1

xi) = 1

David Semeraro (NCSA) CS 357 November 21, 2013 4 / 28

continuous extensions

expected value

E[x] =
∫ b

a
xρ(x) dx

E[g(x)] =
∫ b

a
g(x)ρ(x) dx

variance

σ2[x] =
∫ b

a
(x − E[x])2ρ(x) dx

σ2[g(x)] =
∫ b

a
(g(x) − E[g(x)])2ρ(x) dx

estimating the expected value

E[g(x)] ≈ 1
N

N∑
i=1

g(xi)

David Semeraro (NCSA) CS 357 November 21, 2013 5 / 28

Computing Volumes

Let the domain be defined by the following inequalities
0 6 x 6 1 0 6 y 6 1 0 6 z 6 1

x2 + sin(y) 6 1
x − z + ey 6 1

Generate n random points in the cube.
Determine how many satisfy the last two inequalities, call it m
m/n will be the approximate volume.

David Semeraro (NCSA) CS 357 November 21, 2013 6 / 28

Simulation

physical situations with element of chance
simulate on the computer
statistical conclusions from repeated experiments
applications to simulation of servers, queues etc.

David Semeraro (NCSA) CS 357 November 21, 2013 7 / 28

Rolling a die

Revisit the roll of a die. This time the die is ”loaded” such that the probability
of rolling a particular number is not one in six but rather that given by the table
below.

Outcome 1 2 3 4 5 6
Probability 0.2 0.14 0.22 0.16 0.17 0.11

distribute random variable x in (0, 1)
break into six subintervals of length given by the probabilities in the table.
count occurances that land in each interval as occurance of throwing that
number.

David Semeraro (NCSA) CS 357 November 21, 2013 8 / 28

Rolling a die

Python code to simulate roll of loaded dice.

1 import numpy as np

2

3 y = np.array([0.2,0.34,0.56,0.72,0.89,1.0])

4 m = np.zeros(6)

5 n = 5000

6 r = np.random.rand(n)

7 for i in range(n):

8 for j in range(6):

9 if (r[i] < y[j]):

10 m[j] = m[j] + 1

11 break

12 print m/n

Calculated probabilities.
0.2024 0.1356 0.2158 0.1604 0.1762 0.1096

David Semeraro (NCSA) CS 357 November 21, 2013 9 / 28

Birthday problem

What is the probability that in a room of n people at least two share the same
birthday?

365 possible birthdays
select n random integers from {1, 2, 3, · · · , 365}
examine to see if there is a match
repeat experiment many times

David Semeraro (NCSA) CS 357 November 21, 2013 10 / 28

Birthday problem

Python code for Birthday Problem. Generate n random days out of 365 and
see if any of them are the same.

1 def Birthday(n):

2 days = []

3 r = np.random.rand(n)

4 for i in range(365):

5 days.append(False)

6 bd = False

7 for i in range(n):

8 number = int(364*r[i] + 1)

9 if (days[number]):

10 bd = True

11 break

12 days[number] = True

13 return bd

David Semeraro (NCSA) CS 357 November 21, 2013 11 / 28

Birthday problem

Call the Birthday routine npts times (repeat the experiment to determine
probability)

1 def Probably(n,npts):

2 sum = 0.0

3 for i in range(npts):

4 if(Birthday(n)):

5 sum = sum + 1.0

6 return sum/npts

Call Probably once for each number of people n.

1 for i in arange(5,56,5):

2 pr = Probably(i,3000)

3 print "%5.3f" %pr

David Semeraro (NCSA) CS 357 November 21, 2013 12 / 28

Birthday problem

Probability results:
people probability

5 0.022
10 0.111
15 0.249
20 0.402
25 0.575
30 0.706
35 0.818
40 0.889
45 0.936
50 0.965
55 0.989

David Semeraro (NCSA) CS 357 November 21, 2013 13 / 28

Randomness
From M. Heath, Scientific Computing, 2nd ed., CS450

Randomness ≈ unpredictability
One view: a sequence is random if it has no shorter description
Physical processes, such as flipping a coin or tossing dice, are
deterministic with enough information about the governing equations and
initial conditions.
But even for deterministic systems, sensitivity to the initial conditions can
render the behavior practically unpredictable.
we need random simulation methods

David Semeraro (NCSA) CS 357 November 21, 2013 14 / 28

Repeatability
From M. Heath, Scientific Computing, 2nd ed., CS450

With unpredictability, true randomness is not repeatable
...but lack of repeatability makes testing/debugging difficult
So we want repeatability, but also independence of the trials

1 >> rand(’seed’,1234)

2 >> rand(10,1)

David Semeraro (NCSA) CS 357 November 21, 2013 15 / 28

Pseudorandom Numbers
From M. Heath, Scientific Computing, 2nd ed., CS450

Computer algorithms for random number generations are deterministic

...but may have long periodicity (a long time until an apparent pattern
emerges)
These sequences are labeled pseudorandom
Pseudorandom sequences are predictable and reproducible (this is
mostly good)

David Semeraro (NCSA) CS 357 November 21, 2013 16 / 28

Random Number Generators
From M. Heath, Scientific Computing, 2nd ed., CS450

Properties of a good random number generator:
Random pattern: passes statistical tests of randomness
Long period: long time before repeating

Efficiency: executes rapidly and with low storage
Repeatability: same sequence is generated using same initial states

Portability: same sequences are generated on different architectures

David Semeraro (NCSA) CS 357 November 21, 2013 17 / 28

Random Number Generators
From M. Heath, Scientific Computing, 2nd ed., CS450

Early attempts relied on complexity to ensure randomness
“midsquare” method: square each member of a sequence and take the
middle portion of the results as the next member of the sequence
...simple methods with a statistical basis are preferable

David Semeraro (NCSA) CS 357 November 21, 2013 18 / 28

Linear Congruential Generators
From M. Heath, Scientific Computing, 2nd ed., CS450

Congruential random number generators are of the form:

xk = (axk−1 + c) (mod M)

where a and c are integers given as input.
x0 is called the seed
Integer M is the largest integer representable (e.g. 231 − 1 = 2147483647)
Quality depends on a and c. The period will be at most M.

Example
Let a = 13, c = 0, m = 31, and x0 = 1.

1, 13, 14, 27, 10, 6, . . .

This is a permutation of integers from 1, . . . , 30, so the period is m − 1.

David Semeraro (NCSA) CS 357 November 21, 2013 19 / 28

History
From C. Moler, NCM

IBM used Scientific Subroutine Package (SSP) in the 1960’s the
mainframes.
Their random generator, rnd used a = 65539, c = 0, and m = 231.
arithmetic mod 231 is done quickly with 32 bit words.
multiplication can be done quickly with a = 216 + 3 with a shift and short
add.
Notice (mod m):

xk+2 = 6xk+1 − 9xk

...strong correlation among three successive integers

David Semeraro (NCSA) CS 357 November 21, 2013 20 / 28

History
From C. Moler, NCM

Matlab used a = 75, c = 0, and m = 231 − 1 for a while
period is m − 1.
this is no longer sufficient

David Semeraro (NCSA) CS 357 November 21, 2013 21 / 28

what’s used?

Two popular methods:
1. Method of Marsaglia (period ≈ 21430).

1 Initialize x0, . . . , x3 and c to random values given a seed
2

3 Let s = 2111111111xn−4 + 1492xn−31776xn−2 + 5115xn−1 + c
4

5 Compute xn = s mod 232

6

7 c = floor(s/232)

2. rand() in Unix uses a = 1103515245, c = 12345, m = 231.

In general, the digits in random numbers are not themselves random...some
patterns reoccur much more often.

David Semeraro (NCSA) CS 357 November 21, 2013 22 / 28

Linear Congruential Generators
From M. Heath, Scientific Computing, 2nd ed., CS450

sensitive to a and c
be careful with supplied random functions on your system
period is M
standard division is necessary if generating floating points in [0, 1).

http://www.cse.uiuc.edu/iem/random/pairplot/

David Semeraro (NCSA) CS 357 November 21, 2013 23 / 28

http://www.cse.uiuc.edu/iem/random/pairplot/

Typical LCG values
Source m a c

Numerical Recipes 232 1664525 1013904223
Borland C/C++ 232 22695477 1

glibc (GCC) 232 1103515245 12345
ANSI C: Watcom C, Digital Mars, etc 232 1103515245 12345

Borland Delphi, Virtual Pascal 232 134775813 1
MS Visual C++ 232 214013 2531011

Apple CarbonLib 231 − 1 16807 0

David Semeraro (NCSA) CS 357 November 21, 2013 24 / 28

Fibonacci
From M. Heath, Scientific Computing, 2nd ed., CS450

produce floating-point random numbers directly using differences, sums,
or products.
Typical subtractive generator:

xk = xk−17 − xk−5

with “lags” of 17 and 5.
Lags must be chosen very carefully
negative results need fixing
more storage needed than congruential generators
no division needed
very very good statistical properties
long periods since repetition does not imply a period

David Semeraro (NCSA) CS 357 November 21, 2013 25 / 28

Sampling over intervals
From M. Heath, Scientific Computing, 2nd ed., CS450

If we need a uniform distribution over [a, b), then we modify xk on [0, 1) by

(b − a)xk + a

David Semeraro (NCSA) CS 357 November 21, 2013 26 / 28

Quasi-Random Sequences
From M. Heath, Scientific Computing, 2nd ed., CS450

For some applications, reasonable uniform coverage of the sample is
more important than the “randomness”
True random samples often exhibit clumping
Perfectly uniform samples uses a uniform grid, but does not scale well at
high dimensions
quasi-random sequences attempt randomness while maintaining
coverage

David Semeraro (NCSA) CS 357 November 21, 2013 27 / 28

Quasi-Random Sequences
From M. Heath, Scientific Computing, 2nd ed., CS450

quasi random sequences are not random, but give random appearance
by design, the points avoid each other, resulting in no clumping

http://www.cse.uiuc.edu/iem/random/quasirnd/

David Semeraro (NCSA) CS 357 November 21, 2013 28 / 28

http://www.cse.uiuc.edu/iem/random/quasirnd/

