
Lecture 25
FFT

David Semeraro

University of Illinois at Urbana-Champaign

Some slides by M. Heath

December 3, 2013

David Semeraro (NCSA) CS 357 December 3, 2013 1 / 32

Problem
Given some data:

I What is the nature of the data?
I What is the period?
I Can we rid the data of noise?

David Semeraro (NCSA) CS 357 December 3, 2013 2 / 32

Problem
Given some data:

I What is the nature of the data?
I What is the period?
I Can we rid the data of noise?

David Semeraro (NCSA) CS 357 December 3, 2013 3 / 32

Problem
Given some data:

I What is the nature of the data?
I What is the period?
I Can we rid the data of noise?

David Semeraro (NCSA) CS 357 December 3, 2013 4 / 32

Problem Examples

Example: remove (high-frequency) noise in an input signal
Example: Weather data often contain different cycles

I daily data
I yearly data
I want to isolate one of these

Example: Economic data needs seasonal adjustment
I remove unwanted periodicities to reveal “secular” trends

Example: digital filtering in audio

David Semeraro (NCSA) CS 357 December 3, 2013 5 / 32

Other Applications

Spectral Analysis
Data compression
Partial Differential Equations

David Semeraro (NCSA) CS 357 December 3, 2013 6 / 32

Recall Least Squares

Minimize the norm of the residual Φ(x) = ||r||22.
Residual r = b − Ax where A ∈ Rnxm

Geometrical interpretation: b is projected onto R(A). The vector r is
orthogonal to R(A).
Construct orthonormal basis for R(A) and project b onto it.
PA = A(ATA)−1AT is the orthogonal projector onto R(A).
Choose x to minimize the distance between b and the column space of A
(key idea)

David Semeraro (NCSA) CS 357 December 3, 2013 7 / 32

Vector space to function space

In the finite case we are constructing a vector v ∈ Rn such that b − v is
minimized. In addition we can write v as:

v = x0a0 + x1a1 + · · ·+ xm−1am−1

where the ai are the columns of A.
Instead of vectors now consider functions. We wish to find the ”best”
approximation to a function f by a linear combination of bais functions rather
than vectors.

f ∗ = c0φ0 + c1φ1 + · · ·+ cnφn

David Semeraro (NCSA) CS 357 December 3, 2013 8 / 32

Vector space to function space

f ∗ = c0φ0 + c1φ1 + · · ·+ cnφn =

n∑
i=0

ciφi

Here the φi are functions and are taken to be linearly independent (∑n
j=0 cjφj = 0 implies cj = 0 for all j). We choose the coefficients cj such that f ∗

lies the shortest distance from f .
The shortes distance from a point to a linear subspace is the length of the
vector, between the point and subspace, that is perpendicular to the
subspace. (think of the subspace as a plane and the point as the function f)

||f − f ∗||2 =

∫ b

a
|f ∗(x) − f (x)|2 dx

David Semeraro (NCSA) CS 357 December 3, 2013 9 / 32

Inner products

The inner product is defined as follows:

Continuous (f , g) =
∫b

a f (x)g(x) dx
Discrete (f , g) =

∑n
i=0 f (xi)g(xi)

Properties of inner products:
(f , g) = (g, f)
(f , f) > 0
(αf + βg,φ) = α(f ,φ) + β(g,φ)

David Semeraro (NCSA) CS 357 December 3, 2013 10 / 32

Orthogonal systems

Two functions f and g are said to be orthogonal if (f , g) = 0
A sequence of functions φ0,φ1, · · · ,φn form an orthogonal system if
(φi,φj) = 0 for i , j and ||φi|| , 0 for all i.
If ||φi|| = 1 for all i the system is orthonormal.

David Semeraro (NCSA) CS 357 December 3, 2013 11 / 32

Function approximation by Least Squares

When φ0,φ1, · · · ,φn are linearly independent the least squares problem has
a unique solution:

f ∗ =

n∑
j=0

c∗j φj

where the coefficients c∗j satisfy the normal equations:

n∑
j=0

(φj,φk)c∗j = (f ,φk) (k = 0, 1, 2, · · · , n)

This follows from the orthogonality property that f − f ∗ is orthogonal to all the
φj.
If φ0,φ1, · · · ,φn form an orthogonal system the orthogonal (or Fourier)
coefficients satisfy:

c∗j =
(f ,φj)

(φj,φj)

David Semeraro (NCSA) CS 357 December 3, 2013 12 / 32

Fourier Series

We seek the Least-squares approximation of a continuous function f that is
periodic on the interval [−π,π] using trigonometric polynomials as a basis.
Consider the orthonormal basis:

U = {φ0,φ1, · · · ,φ2N−1,φ2N}

=

{
1√
2π

,
1√
π

cos(x),
1√
π

sin(x), · · · ,
1√
π

cos(Nx),
1√
π

sin(Nx)
}

Since the basis functions are orthonormal ((φi,φi) = 1) the fourier coefficients
become cj = (f ,φj). The projection of f onto the space spanned by the basis
functions can be written:

f ∗ = (f ,φ0)φ0 + (f ,φ1)φ1 + · · ·+ (f ,φ2N−1)φ2N−1 + (f ,φ2N)φ2N

David Semeraro (NCSA) CS 357 December 3, 2013 13 / 32

Fourier Series

Represent the inner product terms as coefficients:

1
2

a0 =

(
f ,

1√
2π

)
1√
2π

=
1

2π

∫π
−π

f (x) dx

an =

(
f ,

1√
π

cos(nx)
)

1√
π

=
1
π

∫π
−π

f (x)cos(nx) dx

bn =

(
f ,

1√
π

sin(nx)
)

1√
π

=
1
π

∫π
−π

f (x)sin(nx) dx

We can now write f ∗ as:

f ∗ =
1
2

a0 +a1cos(x)+b1sin(x)+a2cos(2x)+b2sin(2x)+ · · ·+ancos(nx)+bnsin(nx)

David Semeraro (NCSA) CS 357 December 3, 2013 14 / 32

Fourier Series

The Nth order Fourier approximation to f is then:

f ∗ =
1
2

a0 +

N∑
n=1

[ancos(nx) + bnsin(nx)]

The accuracy of this approximation imporves as N gets larger. The Fourier
Series of f on [−π,π] is:

f ∗ =
1
2

a0 +

∞∑
n=1

[ancos(nx) + bnsin(nx)]

David Semeraro (NCSA) CS 357 December 3, 2013 15 / 32

Interpolation by trig

When we have periodic data, use periodic interpolating functions: sines,
cosines, etc

Decompose a function into a combination of sines and cosines (as we did
with polynomial basis functions)

Decomposing into (co)sines of different “frequencies” naturally orders the
data.

The gist: working in a frequency (transformed) space is easier (faster)
than the time domain.

David Semeraro (NCSA) CS 357 December 3, 2013 16 / 32

Recall Fourier

Suppose f (x) is periodic on [−π,π], then the Fourier Series for f (x) is

f (x) ≈ a0

2
+

∞∑
n=1

an cos(nx) + bn sin(nx)

with
an =

1
π

∫π
−π

f (x) cos(nx) dx bn =
1
π

∫π
−π

f (x) sin(nx) dx

Example: f (x) = x on [−π,π] (sawtooth). Then

an =
1
π

∫π
−π

x cos(nx) dx = 0

bn =
1
π

∫π
−π

x sin(nx) dx = 2
(−1)n+1

n
so

f (x) = 2
∞∑

n=1

(−1)n+1

n
sin(nx)

David Semeraro (NCSA) CS 357 December 3, 2013 17 / 32

Sawtooth Fourier

David Semeraro (NCSA) CS 357 December 3, 2013 18 / 32

General Fourier

Use complex exponential notation using Euler’s Identity:

eix = cos(x) + i sin(x), i =
√
−1

Pure cosine and sine and be written with this:

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i

Then a Fourier Series on interval [a, b] with period τ is

g(x) =
∞∑

n=−∞Gnei2πnx/τ

with

Gn =
1
τ

∫ b

a
g(x)e−i2πnx/τ dx

David Semeraro (NCSA) CS 357 December 3, 2013 19 / 32

Roots of Unity

A primitive nth root of unity for integer n is given by

ωn = cos
(

2π
n

)
− i sin

(
2π
n

)
= e−

2πi
n

The nth roots of unity are called twiddle factors here and are given by ωk
n

or ω−k
n , k = 0, . . . , n − 1

David Semeraro (NCSA) CS 357 December 3, 2013 20 / 32

Discrete Fourier Transforms

The Discrete Fourier Transform (DFT) of sequence x = [x0, . . . , xn−1]
T is a

sequence y = [y0, . . . , yn−1]
T given by

ym =

n−1∑
k=0

xkω
mk
n , m = 0, 1, . . . , n − 1

in matrix notation this is

y = Fnx, {Fn}mk = ω
mk
n

Example with n = 4:

F4 =


1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


David Semeraro (NCSA) CS 357 December 3, 2013 21 / 32

Inverse Discrete Fourier Transforms

Note:

1
n


1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9




1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


So F−1

n = 1
n F∗

n.
Thus the Inverse DFT is

xk =
1
n

n−1∑
m=0

ymω
−mk
n , k = 0, 1, . . . , n − 1

Result: DFT, IDFT give trigonometric interpolation using only a mat-vec
O(n2).

David Semeraro (NCSA) CS 357 December 3, 2013 22 / 32

DFTs

The DFT y of a real sequence x is generally complex
Components of y are then conjugate symmetric: yk = ȳn−k,
k = 1, . . . , (n/2) − 1
Two special components:

1 y0 is the sum of the components of x. This is the zero frequency component
(constant function or DC component)

2 yn/2 has the highest representable frequency (Nyquist frequency)

Components beyond Nyquist are negatives of those below Nyquist.

David Semeraro (NCSA) CS 357 December 3, 2013 23 / 32

Example: DFT

For a random sequence:

y = F8x = F8



4
0
3
6
2
9
6
5


=



35.0
−5.1 + 8.7i
−3.0 + 2.0i
9.1 + 2.7i

−5.0
9.1 − 2.7i
−3.0 − 2.0i
−5.1 − 8.7i


The transformed sequence is complex, but y0 and y4 are real, while y5, y6,
and y7 are complex conjugates of y3, y2, and y1, respectively.
y0 is in fact the sum

David Semeraro (NCSA) CS 357 December 3, 2013 24 / 32

Example: DFT

For a cyclic sequence:

y = F8x = F8



1
−1
1
−1
1
−1
1
−1


=



0
0
0
0
8
0
0
0


Sequence x has highest rate of oscillation possible for this sample.
Sequence y has only nonzero component at the Nyquist frequency

David Semeraro (NCSA) CS 357 December 3, 2013 25 / 32

Computing the DFT

Goal: take advantage of symmetries in the DFT for efficiency
Consider n = 4:

ym =

3∑
k=0

xkω
mk
n , m = 0, . . . , 3

or

y0 = x0ω
0
n + x1ω

0
n + x2ω

0
n + x3ω

0
n

y1 = x0ω
0
n + x1ω

1
n + x2ω

2
n + x3ω

3
n

y2 = x0ω
0
n + x1ω

2
n + x2ω

4
n + x3ω

6
n

y3 = x0ω
0
n + x1ω

3
n + x2ω

6
n + x3ω

9
n

David Semeraro (NCSA) CS 357 December 3, 2013 26 / 32

Computing the DFT

ω0
n = ω4

n = 1, ω2
n = ω6

n = −1, ω9
n = ω1

n so

y0 = (x0 + x2ω
0
n) +ω

0
n(x1 +ω

0
nx3)

y1 = (x0 − x2ω
0
n) +ω

1
n(x1 −ω

0
nx3)

y2 = (x0 + x2ω
0
n) +ω

2
n(x1 +ω

0
nx3)

y3 = (x0 − x2ω
0
n) +ω

3
n(x1 −ω

0
nx3)

some of these are 1 (ω0
n), but even so we have 8 additions and 6

multiplications
without the simplification this is 12 additions, 16 multiplications

David Semeraro (NCSA) CS 357 December 3, 2013 27 / 32

Computing the DFT

Computing the DFT of the 4 point problem reduced to computing the DFT
of its two 2 point even and odd subsequences.
Generally, the pattern emerges

F1 = 1, F2 =

[
1 1
1 −1

]
, F4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 , . . .

The DFT of an n−point sequence can be computing by two n/2-point DFTS (n
even)

David Semeraro (NCSA) CS 357 December 3, 2013 28 / 32

Computing the DFT

Let P4 be a permutation matrix

P4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


and D2 be the diagonal matrix

D2 =

[
ω0

4 0
0 ω1

4

]
=

[
1 0
0 −i

]
Then

F4P4 =


1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

 =

[
F2 D2F2
F2 −D2F2

]

David Semeraro (NCSA) CS 357 December 3, 2013 29 / 32

Computing the DFT
from M. Heath

So F4 can be rearranged to diagonally scaled blocks of F2

Holds for any even n
In general, Pn is a permutation that groups even numbered columns then
odd numbered columns. And Dn/2 = diag(1,ωn, . . . ,ω(n/2)−1

n).
To apply Fn, apply Fn/2 to the even and odd subsequences and scale the
results (where necessary) by ±Dn/2.
This recursive DFT is called the Fast Fourier Transform (FFT)

David Semeraro (NCSA) CS 357 December 3, 2013 30 / 32

FFT

Discrete Fourier Transform
Fast Fourier Transform

Applications

FFT Algorithm

procedure fft(x, y, n,ω)
if n = 1 then

y[0] = x[0]
else

for k = 0 to (n/2) − 1
p[k] = x[2k]
s[k] = x[2k + 1]

end
fft(p, q, n/2,ω2)
fft(s, t, n/2,ω2)
for k = 0 to n − 1

y[k] = q[k mod (n/2)]+
ωkt[k mod (n/2)]

end
end

{ bottom of recursion }

{ split into even and
odd subsequences }

{ call fft procedure
recursively }

{ combine results }

Michael T. Heath Scientific Computing 16 / 32
David Semeraro (NCSA) CS 357 December 3, 2013 31 / 32

FFT

Cost: log2 n levels of recursion, with O(n) operations each. So a total cost
of O(n log2 n).
Often the transform is computed in-place in one array
More reductions (storage and operation count in half) if x is real
Final sequence y can be ordered in O(n log2 n) by a sort
Can write as iteration rather than recursion.
Still an algorithm: one particular way of computing the DFT

David Semeraro (NCSA) CS 357 December 3, 2013 32 / 32

