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@ Given some data:
» What is the nature of the data?
> What is the period?
» Can we rid the data of noise?
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@ Example: remove (high-frequency) noise in an input signal
@ Example: Weather data often contain different cycles

> daily data

~ yearly data

» want to isolate one of these

@ Example: Economic data needs seasonal adjustment

» remove unwanted periodicities to reveal “secular” trends
@ Example: digital filtering in audio



@ Spectral Analysis

@ Data compression

@ Partial Differential Equations
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@ Minimize the norm of the residual @ (x) = ||r|3.
@ Residual r = b — Ax where A € R™™

@ Geometrical interpretation: b is projected onto R(A). The vector r is
orthogonal to R(A).

@ Construct orthonormal basis for R(A) and project b onto it.
@ P, = A(ATA)"'AT is the orthogonal projector onto R(A).

@ Choose x to minimize the distance between b and the column space of A
(key idea)



In the finite case we are constructing a vector v € R" such thatb — v is
minimized. In addition we can write v as:

U = Xodo + X141 + - + Xpp—14m—1

where the a; are the columns of A.

Instead of vectors now consider functions. We wish to find the "best”
approximation to a function f by a linear combination of bais functions rather
than vectors.

fr=codo+cr1dpr 4+ by



fr=cobo+crdr+ - cudu =) cis
i=0

Here the ¢; are functions and are taken to be linearly independent (
2_i—ocid; = 0 implies ¢; = 0 for all j). We choose the coefficients c; such that f*
lies the shortest distance from f.
The shortes distance from a point to a linear subspace is the length of the
vector, between the point and subspace, that is perpendicular to the
subspace. ( think of the subspace as a plane and the point as the function f)
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The inner product is defined as follows:
e Continuous (f,g) = [ f(x)g(x) dx
e Discrete (f,g) = Y I o f(xi)g(x:)
Properties of inner products:
° (f.8) =(8f)
° (f.f)=0

o (of +Bg:d) = «lf,d) + B(g, d)



@ Two functions f and g are said to be orthogonal if (f,g) =0
@ A sequence of functions ¢y, ¢1,

.-+, ¢, form an orthogonal system if
(i, dj) = 0fori=+jand [l # 0 for all i.
@ If [|p;|| =1 for all i the system is orthonormal.



When ¢y, b1, - - - , d,, are linearly independent the least squares problem has
a unique solution:

n
fr=2_cio
j=0
where the coefficients cf satisfy the normal equations:

n

Z(d)]!d)k)cj* = (f’ d)k) (kzo!]‘lzl ,7’1)

j=0
This follows from the orthogonality property that f — f* is orthogonal to all the
¢j.

If &g, d1,-- -, &, form an orthogonal system the orthogonal ( or Fourier)
coefficients satisfy:
o (f b))
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We seek the Least-squares approximation of a continuous function f that is
periodic on the interval [—m, 7] using trigonometric polynomials as a basis.
Consider the orthonormal basis:

U ={do, d1, -+, dan—1, don}

= { L L cos(x) L sin(x) cos(Nx)
- \/E[, ﬁ L) \/7T[ L) Ll e E)

—sin(Nx)}
VT VT
Since the basis functions are orthonormal ((¢;, ¢;) = 1) the fourier coefficients
become ¢; = (f, ¢;). The projection of f onto the space spanned by the basis
functions can be written:

f =, do)bo + (f, d1)b1 + - - + (f, ban—1)ban—1 + (f, ban) bon

o> P = DA
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Represent the inner product terms as coefficients
1 1 1 1 (™
—ap=|f,—— x)dx
2" (f \/271) N A J S

a, = ( —cos nx > T 71 » f(x)cos(nx) dx
b, = ( sm nx > 7

E f(x)sin(nx) dx

—TT

We can now write f* as

=3

—ag+aycos(x) + bysin(x) +axcos(2x) + bpsin(2x) + - - - +ay,cos(nx) + bysin(nx)



The N order Fourier approximation to f is then:

N
= %ﬂo + Z la,cos(nx) + bysin(nx)]

n=1

The accuracy of this approximation imporves as N gets larger. The Fourier
Series of f on [—m, 7] is:

= 1,10 + Z [a,cos(nx) + bysin(nx)]

n=1



@ When we have periodic data, use periodic interpolating functions: sines,
cosines, etc

@ Decompose a function into a combination of sines and cosines (as we did
with polynomial basis functions)

@ Decomposing into (co)sines of different “frequencies” naturally orders the
data.

@ The gist: working in a frequency (transformed) space is easier (faster)
than the time domain.
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p rnf(x) cos(nx)dx b, =
@ Example: f

SO

@ Suppose f(x) i iodi

is periodic on [—m, 1], then the Fourier Series for f
flx) ~ % + Z a, cos(nx) + by, sin(nx)
n=1

with

1

ay, = —

1
=xon[—m

- Jnﬁf(x) sin(nx) dx
] (sawtooth). Then

an:—J xcos(nx)dx =0
T —TT

T‘ _1)n+1
bn:%J xsin(nx)dx—Z( U

> n+1
Z sin(nx)
" = z = = 9ac
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@ Use complex exponential notation using Euler’s Identity:

e = cos(x) +isin(x),

i=+v-—1
@ Pure cosine and sine and be written with this:

eix _{_efix
cos(x) =

eix _ efix
= 5 sin(x) =

2i
@ Then a Fourier Series on interval [a, b] with period T is

g(x) _ Z GneiZﬂnx/T

n=—00
with

- J g(x)elermx/”r dx



@ A primitive n'" root of unity for integer n is given by

(27‘[) .. (27‘() omi
w,=cos| — | —isin|— ) =e
n n

n

@ The n'" roots of unity are called twiddle factors here and are given by wk
orw; ¥ k=0,...,n—1

=} = = AP N G4
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@ The Discrete Fourier Transform (DFT) of sequence x = [xo,...,x, 1]T is a
sequence y = [yo, - - ., Yu—1]" given by

n—1
ym=ZkaTk, m=0,1,...,n—1
k=0

@ in matrix notation this is

y= any {Fn}mk = w:lnk

@ Example with n = 4:

—i -1

Fa= -1 1 -1

[ S
Y



@ Note:

1 1 1 1 1 1 1 1 1 0 0O
111 ! w? 0|1 o o @l |01 00
nll w? w?* w1l w? w* wf |0 01 0

1 w3 w° w? |1l w w 0 001

® SoF,'=1F;.
@ Thus the Inverse DFT is

1n—1 B
xk:EZOymwn"’k, k=0,1,...,n—1
e

@ Result: DFT, IDFT give trigonometric interpolation using only a mat-vec
O(n?).



@ The DFT y of a real sequence x is generally complex

@ Components of y are then conjugate symmetric: yx = ,,«,
k=1,...,(n/2)—1

@ Two special components:

@ o is the sum of the components of x. This is the zero frequency component
(constant function or DC component)

@ v.,2 has the highest representable frequency (Nyquist frequency)
@ Components beyond Nyquist are negatives of those below Nyquist.



@ For a random sequence:

35.0
~5.1+8.7i
~3.0 +2.0i

9.1+2.7i
~5.0
9.1-27i
~3.0 —2.0i
| 5.1 —8.7i]

yZng:Fg

N0 N ONWDO

@ The transformed sequence is complex, but iy and y4 are real, while ys, ye,
and y are complex conjugates of y3, 1, and y1, respectively.

@ 1y is in fact the sum



@ For a cyclic sequence:

]/ZP8XZP8 =

OO DO WO O OO

@ Sequence x has highest rate of oscillation possible for this sample.
@ Sequence y has only nonzero component at the Nyquist frequency



@ Goal: take advantage of symmetries in the DFT for efficiency
@ Consider n = 4:

3
k
ym:ZkaZ‘, m=0,...,3
k=0

or
Yo = wag + xlwg + XZ(,U(,)l + x;;w?,

= Xng + Xl(,U}l + xzwf, + xgwf,

Yo = wag + xlw,zl + xzw‘,*, + x3wf,

Y3 = X()wg + xlwf’l + XQ(,UEI + X3w2
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o wi=wi=1w=wd=-1,w) =w!so
Yo = (xo + xzwg) + w?,(xl + w2x3)
y1 = (X0 — W) + wy (x; — whxs)
Y2 = (%0 + xwY) + w?(x; + wlxz)
¥ = (X0 — xowh) + wj (x1 — wixs)

@ some of these are 1 (w!), but even so we have 8 additions and 6
multiplications

@ without the simplification this is 12 additions, 16 multiplications



@ Computing the DFT of the 4 point problem reduced to computing the DFT
of its two 2 point even and odd subsequences.

@ Generally, the pattern emerges

11 1 1
1 1 1 —i -1 i

F =1, Fzz[l _1], E=|] 51 1 4l
1 i -1 —i

The DFT of an n—point sequence can be computing by two 7/2-point DFTS (n J
even)
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@ Let P4 be a permutation matrix

Py =

SO O
O = OO
[N e}
_ o O o

and D, be the diagonal matrix
0
C|wy 0 (1 0
o= )=l Y

1 1 1
1 —i i| _[F D
1 -1 —1| " |F, —DyF

-1 i —i

o = = = = 9Dac

@ Then

FyPy =

S Y



@ So F, can be rearranged to diagonally scaled blocks of F,
@ Holds for any even n

@ In general, P, is a permutation that groups even numbered columns then
odd numbered columns. And D, , = diag(1, w,, ..., w!”> ™).

@ To apply F,, apply F,/, to the even and odd subsequences and scale the
results (where necessary) by +D,, ».

@ This recursive DFT is called the Fast Fourier Transform (FFT)



procedure £ft(z,y,n,w)

if »n =1 then
y[0] = x[0] { bottom of recursion }
else
fork=0to (n/2) -1
plk] = z[2k] { split into even and
slk] = z[2k + 1] odd subsequences }
end
£ft(p,q,n/2,w?) { call ££t procedure
fft(s,t,n/2,w?) recursively }
fork=0ton—1
y[k] = q[k mod (n/2)] + { combine results }
wkt[k mod (n/2)]
end
end [

o = = =



@ Cost: log, 1 levels of recursion, with O(n) operations each. So a total cost
of O(nlog, n).

@ Often the transform is computed in-place in one array

@ More reductions (storage and operation count in half) if x is real
@ Final sequence y can be ordered in O(nlog, ) by a sort

@ Can write as iteration rather than recursion.

@ Still an algorithm: one particular way of computing the DFT



