
Numerical Methods

CS 357 Fall 2013

David Semeraro

Science Application

• Partial differential equations.
• Solution by finite difference methods.
• Numerics

– Derivative approximation (Taylor Series)
– Linear Algebra (Sparse Matrices)
– Iterative methods (Jacobi)
– Convergence (Eigenvalues)
– Numerical error (effect of denormal numbers)

Laplace’s Equation

• Elliptic PDE.

– Heat transfer

– Incompressible viscous flow

• ∇2𝜑 =
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
= 0 in domain Ω

• Boundary Conditions 𝜑 𝑥, 𝑦 = 𝑓(𝑥, 𝑦) on
δ(Ω)

Laplace’s Equation

• Solution Domain

Ω =
0 < 𝑥 < 1
0 < 𝑦 < 1

• Boundary Conditions

𝜑 𝑥, 𝑦 = 0

𝑥 = 0; 0 ≤ 𝑦 ≤ 1
𝑥 = 1; 0 ≤ 𝑦 ≤ 1
𝑦 = 1; 0 ≤ 𝑥 ≤ 1

𝜑 𝑥, 𝑦 = sin 2𝜋𝑥 𝑦 = 0; 0 ≤ 𝑥 ≤ 1

Laplace’s Equation

∇2𝜑 = 0 𝜑 = 0

𝜑 = 0

𝜑 = 0

𝜑 = sin(2𝜋𝑥)

𝑥 →

y

Finite Difference Grid

(i,j)

h
h

• Approximate the function 𝜑 at specific points
in the domain Ω.

• 𝑥 = 𝑖 × ℎ, 𝑦 = 𝑗 × ℎ
• 0 < 𝑖 < 𝑛; 0 < 𝑗 < 𝑛 in domain Ω

• ℎ =
1

𝑛

• Use Taylor series to approximate PDE at (i,j).

Approximate Derivatives

• Taylor series approximation of function on
computational mesh.

 X direction.

 𝜑 𝑥 + ℎ, 𝑦 = 𝜑 𝑥, 𝑦 + ℎ𝜑′ 𝑥, 𝑦 +
ℎ2

2
𝜑′′ 𝑥, 𝑦 +

ℎ3

3!
𝜑′′′ 𝑥, 𝑦 + 𝑂(ℎ4)

 𝜑 𝑥 − ℎ, 𝑦 = 𝜑 𝑥, 𝑦 − ℎ𝜑′ 𝑥, 𝑦 +
ℎ2

2
𝜑′′ 𝑥, 𝑦 −

ℎ3

3!
𝜑′′′ 𝑥, 𝑦 + 𝑂(ℎ4)

Approximate Derivatives

 𝜑 𝑥 + ℎ, 𝑦 + 𝜑 𝑥 − ℎ, 𝑦 = 2𝜑 𝑥, 𝑦 + ℎ2𝜑′′ 𝑥, 𝑦 +
𝑂(ℎ4)

𝜕2𝜑

𝜕𝑥2
=

1

ℎ2
𝜑 𝑥 + ℎ, 𝑦 − 2𝜑 𝑥, 𝑦 + 𝜑(𝑥 − ℎ, 𝑦) +

𝑂 ℎ2

𝜕2𝜑

𝜕𝑥2
≈

1

ℎ2
𝜑 𝑥 + ℎ, 𝑦 − 2𝜑 𝑥, 𝑦 + 𝜑(𝑥 − ℎ, 𝑦)

Perform similar operations to approximate
𝜕2𝜑

𝜕𝑦2
.

Approximate Derivatives

• We now have approximations to the
derivatives at (𝑥, 𝑦).

• We introduce an new variable valid at the
node points that approximates the value of 𝜑
at the node points.

𝜑 𝑖, 𝑗 ≈ 𝜑(𝑥, 𝑦)
𝑥 = 𝑖 × ℎ
𝑦 = 𝑗 × ℎ

Finite Difference Approximation

• Combining derivative approximations gives:
𝛻2𝜑(𝑥, 𝑦)

≈
1

ℎ2
 𝜑 𝑖 − 1, 𝑗 + 𝜑 𝑖, 𝑗 − 1

+ 𝜑 𝑖 + 1, 𝑗 + 𝜑 𝑖, 𝑗 + 1 − 4𝜑 𝑖, 𝑗 = 0

• Satisfied at interior points of the domain.

• The error in the approximation is 𝑂(ℎ2).

Linear Algebra

• Application of the approximation to the
Laplace equation at each of the interior points
in the grid yields a large sparse linear system
of equations in the unknowns 𝜑 (𝑖, 𝑗).

• The system is block tridiagonal.

Linear Algebra

• The linear system of equations has the
following bock form.

1

ℎ2

𝐷 𝐼
𝐼 𝐷

⋱

 ⋱

⋱ 𝐼
𝐼 𝐷

𝜑 (𝑖, 1)
𝜑 (𝑖, 2)

⋮
𝜑 (𝑖, 𝑛 − 1)

=
1

ℎ2

𝑏1
𝑏2
⋮

𝑏𝑛−1

• The elements of 𝑏𝑖 are functions of the
boundary conditions.

• The blocks 𝐷 ∈ 𝑅𝑛−1×𝑛−1

Linear Algebra

• The block 𝐷 is tridiagonal with the following
structure.

−4 1
1 −4

⋱

 ⋱

⋱ 1
1 −4

• The blocks in the partition correspond to rows
in the computational mesh.

Linear Algebra

𝑖 →

𝜑 (𝑖, 1) corresponds to
first row in the mesh

Elements of 𝜑 are ordered
with 𝑖 increasing fastest.
(arbitrary decision)

Iterative Methods

• We have transformed our PDE into a linear
system of equations. (Continuous to Discrete).

• Direct solution is expensive and inefficient
compared to iterative methods.

• Explore some alternatives.
– Jacobi
– GS

• The eigenvalues of the jacobi and GS iteration
matrices are all < 1. However the coefficient
matrix is not strictly diagonally dominant.

Jacobi’s Method

For (j=1;j<n;j++):

 for(i=1;i<n;i++):

 𝜑𝑖,𝑗
𝑘+1 = (𝜑𝑖−1,𝑗

𝑘 + 𝜑𝑖+1,𝑗
𝑘 + 𝜑𝑖,𝑗−1

𝑘 + 𝜑𝑖,𝑗+1
𝑘)/4

• Move along the mesh from bottom to top and
from left to right forming new values of 𝜑.

• Do not use the new values until the entire
mesh has been updated.

Jacobi’s Method

New Values Old Values

GS Method

For (j=1;j<n;j++):

 for(i=1;i<n;i++):

 𝜑𝑖,𝑗
𝑘+1 = (𝜑𝑖−1,𝑗

𝑘+1 + 𝜑𝑖+1,𝑗
𝑘 + 𝜑𝑖,𝑗−1

𝑘+1 + 𝜑𝑖,𝑗+1
𝑘)/4

• Move along the mesh from bottom to top and
from left to right forming new values of 𝜑.

• Use the new values of 𝜑 as soon as they are
available.

GS Method

Values at k+1

Values at k

GS Method

Old values

New values

There is enough information
along the wave front to
evaluate the new values in
parallel

Classic GS goes left to
right, bottom to top.

Block Methods

• Take advantage of the block nature of the
coefficient matrix to advance the solution
faster.

• Use permutations of the rows and columns
and the nature of the stencil to form new
methods. (red black reordering)

Block Jacobi

𝐷 𝐼
𝐼 𝐷

⋱

 ⋱

⋱ 𝐼
𝐼 𝐷

𝜑 (𝑖, 1)
𝜑 (𝑖, 2)

⋮
𝜑 (𝑖, 𝑛 − 1)

=

𝑏1
𝑏2
⋮

𝑏𝑛−1

𝜑 𝑖,𝑗
𝑘+1 = 𝐷−1 𝑏𝑗 − 𝜑 𝑖,𝑗−1

𝑘 − 𝜑 𝑖,𝑗+1
𝑘

Block GS

𝐷 𝐼
𝐼 𝐷

⋱

 ⋱

⋱ 𝐼
𝐼 𝐷

𝜑 (𝑖, 1)
𝜑 (𝑖, 2)

⋮
𝜑 (𝑖, 𝑛 − 1)

=

𝑏1
𝑏2
⋮

𝑏𝑛−1

𝜑 𝑖,𝑗
𝑘+1 = 𝐷−1 𝑏𝑗 − 𝜑 𝑖,𝑗−1

𝑘+1 − 𝜑 𝑖,𝑗+1
𝑘

Block Methods

• Solve a tridiagonal matrix problem at each
step.
– the matrix D can be factored once and used for

each pass

• Jacobi advances the solution one row at a
time not using the new values in theprevious
row.

• GS advances the solution but uses the new
values in the previous row.

Alternating Direction Methods

• Apply GS from bottom to top and then reverse
direction and go from top to bottom.

• Sweep GS from left to right and then from
right to left operating on the columns of the
computational mesh rather than the rows.

• Methods are called Alternating Direction
Implicit (ADI) methods.

Effect of Denormal Numbers

• Recall denormal number are floating point
numbers smaller than machine epsilon.

• Care must be taken in how computational grid
is initialized.
– Initialize to zero

– Initialize to some number larger than mach eps.

• Early computations in corners of zero
initialized grid cause denormal numbers to
appear.

Effect of Denormal Numbers

0

0.005

0.01

0.015

0.02

0.025

0

3
0

0

6
0

0

9
0

0

1
2

0
0

1
5

0
0

1
8

0
0

2
1

0
0

2
4

0
0

2
7

0
0

3
0

0
0

3
3

0
0

3
6

0
0

3
9

0
0

4
2

0
0

4
5

0
0

4
8

0
0

5
1

0
0

5
4

0
0

5
7

0
0

6
0

0
0

6
3

0
0

6
6

0
0

6
9

0
0

7
2

0
0

7
5

0
0

7
8

0
0

8
1

0
0

8
4

0
0

8
7

0
0

9
0

0
0

9
3

0
0

9
6

0
0

9
9

0
0

Ti
m

e

Iteration

Iteration Times

normal

denormal

Solution

