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Science Application 

• Partial differential equations.  
• Solution by finite difference methods. 
• Numerics 

– Derivative approximation (Taylor Series) 
– Linear Algebra (Sparse Matrices) 
– Iterative methods (Jacobi ) 
– Convergence (Eigenvalues) 
– Numerical error (effect of denormal numbers) 



Laplace’s Equation 

• Elliptic PDE.  

– Heat transfer 

– Incompressible viscous flow 

• ∇2𝜑 =
𝜕2𝜑

𝜕𝑥2
+ 

𝜕2𝜑

𝜕𝑦2
= 0  in domain Ω 

• Boundary Conditions 𝜑 𝑥, 𝑦 = 𝑓(𝑥, 𝑦) on 
δ(Ω) 



Laplace’s Equation 

• Solution Domain 

Ω =  
0 < 𝑥 < 1
0 < 𝑦 < 1

 

• Boundary Conditions 

𝜑 𝑥, 𝑦 = 0  

𝑥 = 0; 0 ≤ 𝑦 ≤ 1
𝑥 = 1; 0 ≤ 𝑦 ≤ 1
𝑦 = 1; 0 ≤ 𝑥 ≤ 1

 

𝜑 𝑥, 𝑦 = sin 2𝜋𝑥  𝑦 = 0; 0 ≤ 𝑥 ≤ 1 



Laplace’s Equation 

∇2𝜑 = 0 𝜑 = 0 

𝜑 = 0 

𝜑 = 0 

𝜑 = sin(2𝜋𝑥) 

𝑥 → 

y
 



Finite Difference Grid 

(i,j) 

h 
h 

• Approximate the function 𝜑 at specific points 
in the domain Ω. 

• 𝑥 = 𝑖 × ℎ, 𝑦 = 𝑗 × ℎ 
• 0 < 𝑖 < 𝑛; 0 < 𝑗 < 𝑛 in domain Ω 

• ℎ =
1

𝑛
 

• Use Taylor series to approximate PDE at (i,j). 



Approximate Derivatives 

• Taylor series approximation of function on 
computational mesh.  

 X direction.  

 𝜑 𝑥 + ℎ, 𝑦 =  𝜑 𝑥, 𝑦 + ℎ𝜑′ 𝑥, 𝑦 +
ℎ2

2
𝜑′′ 𝑥, 𝑦 +

ℎ3

3!
𝜑′′′ 𝑥, 𝑦 + 𝑂(ℎ4) 

  𝜑 𝑥 − ℎ, 𝑦 =  𝜑 𝑥, 𝑦 − ℎ𝜑′ 𝑥, 𝑦 +
ℎ2

2
𝜑′′ 𝑥, 𝑦 −

ℎ3

3!
𝜑′′′ 𝑥, 𝑦 + 𝑂(ℎ4) 



Approximate Derivatives 

 𝜑 𝑥 + ℎ, 𝑦 + 𝜑 𝑥 − ℎ, 𝑦 = 2𝜑 𝑥, 𝑦 + ℎ2𝜑′′ 𝑥, 𝑦 +
𝑂(ℎ4) 


𝜕2𝜑

𝜕𝑥2
=

1

ℎ2
𝜑 𝑥 + ℎ, 𝑦 − 2𝜑 𝑥, 𝑦 + 𝜑(𝑥 − ℎ, 𝑦) +

𝑂 ℎ2  


𝜕2𝜑

𝜕𝑥2
≈

1

ℎ2
𝜑 𝑥 + ℎ, 𝑦 − 2𝜑 𝑥, 𝑦 + 𝜑(𝑥 − ℎ, 𝑦)  

 

Perform similar operations to approximate 
𝜕2𝜑

𝜕𝑦2
. 



Approximate Derivatives 

• We now have approximations to the 
derivatives at (𝑥, 𝑦). 

• We introduce an new variable valid at the 
node points that approximates the value of 𝜑 
at the node points.  

𝜑 𝑖, 𝑗 ≈ 𝜑(𝑥, 𝑦) 
𝑥 = 𝑖 × ℎ 
𝑦 = 𝑗 × ℎ 



Finite Difference Approximation 

• Combining derivative approximations gives: 
𝛻2𝜑(𝑥, 𝑦)

≈
1

ℎ2
 𝜑 𝑖 − 1, 𝑗 + 𝜑 𝑖, 𝑗 − 1

+ 𝜑 𝑖 + 1, 𝑗 + 𝜑 𝑖, 𝑗 + 1 − 4𝜑 𝑖, 𝑗  = 0 

• Satisfied at interior points of the domain. 

• The error in the approximation is 𝑂(ℎ2). 



Linear Algebra 

• Application of the approximation to the 
Laplace equation at each of the interior points 
in the grid yields a large sparse linear system 
of equations in the unknowns 𝜑 (𝑖, 𝑗). 

• The system is block tridiagonal.  



Linear Algebra 

• The linear system of equations has the 
following bock form. 

1

ℎ2

𝐷 𝐼
𝐼 𝐷

  
⋱  

 ⋱
  

⋱ 𝐼
𝐼 𝐷

𝜑 (𝑖, 1)
𝜑 (𝑖, 2)

⋮
𝜑 (𝑖, 𝑛 − 1)

=
1

ℎ2

𝑏1
𝑏2
⋮

𝑏𝑛−1

 

• The elements of 𝑏𝑖 are functions of the 
boundary conditions. 

• The blocks 𝐷 ∈  𝑅𝑛−1×𝑛−1  



Linear Algebra 

• The block 𝐷 is tridiagonal with the following 
structure.  

−4 1
1 −4

  
⋱  

 ⋱
  

⋱ 1
1 −4

 

• The blocks in the partition correspond to rows 
in the computational mesh.  



Linear Algebra 

𝑖 → 

 

𝜑 (𝑖, 1) corresponds to 
first row in the mesh 

Elements of 𝜑  are ordered 
with 𝑖 increasing fastest. 
(arbitrary decision) 



Iterative Methods 

• We have transformed our PDE into a linear 
system of equations. (Continuous to Discrete). 

• Direct solution is expensive and inefficient 
compared to iterative methods.  

• Explore some alternatives.  
– Jacobi 
– GS  

• The eigenvalues of the jacobi and GS iteration 
matrices are all < 1. However the coefficient 
matrix is not strictly diagonally dominant.  

 
 



Jacobi’s Method 

For (j=1;j<n;j++): 

 for(i=1;i<n;i++): 

  𝜑𝑖,𝑗
𝑘+1 = (𝜑𝑖−1,𝑗

𝑘 + 𝜑𝑖+1,𝑗
𝑘 + 𝜑𝑖,𝑗−1

𝑘 + 𝜑𝑖,𝑗+1
𝑘 )/4 

 

• Move along the mesh from bottom to top and 
from left to right forming new values of 𝜑. 

• Do not use the new values until the entire 
mesh has been updated.  

 



Jacobi’s Method 

New Values Old Values 



GS Method 

For (j=1;j<n;j++): 

 for(i=1;i<n;i++): 

  𝜑𝑖,𝑗
𝑘+1 = (𝜑𝑖−1,𝑗

𝑘+1 + 𝜑𝑖+1,𝑗
𝑘 + 𝜑𝑖,𝑗−1

𝑘+1 + 𝜑𝑖,𝑗+1
𝑘 )/4 

 

• Move along the mesh from bottom to top and 
from left to right forming new values of 𝜑. 

• Use the new values of 𝜑 as soon as they are 
available.   

 



GS Method 

Values at k+1 

Values at k 



GS Method 

Old values 

New values 

There is enough information 
along the wave front to 
evaluate the new values in 
parallel 

Classic GS goes left to 
right, bottom to top.  



Block Methods 

• Take advantage of the block nature of the 
coefficient matrix to advance the solution 
faster.  

• Use permutations of the rows and columns 
and the nature of the stencil to form new 
methods. (red black reordering) 



Block Jacobi 

𝐷 𝐼
𝐼 𝐷

  
⋱  

 ⋱
  

⋱ 𝐼
𝐼 𝐷

𝜑 (𝑖, 1)
𝜑 (𝑖, 2)

⋮
𝜑 (𝑖, 𝑛 − 1)

=

𝑏1
𝑏2
⋮

𝑏𝑛−1

 

 

𝜑 𝑖,𝑗
𝑘+1 = 𝐷−1 𝑏𝑗 − 𝜑 𝑖,𝑗−1

𝑘 − 𝜑 𝑖,𝑗+1
𝑘  



Block GS 

𝐷 𝐼
𝐼 𝐷

  
⋱  

 ⋱
  

⋱ 𝐼
𝐼 𝐷

𝜑 (𝑖, 1)
𝜑 (𝑖, 2)

⋮
𝜑 (𝑖, 𝑛 − 1)

=

𝑏1
𝑏2
⋮

𝑏𝑛−1

 

 

𝜑 𝑖,𝑗
𝑘+1 = 𝐷−1 𝑏𝑗 − 𝜑 𝑖,𝑗−1

𝑘+1 − 𝜑 𝑖,𝑗+1
𝑘  



Block Methods 

• Solve a tridiagonal matrix problem at each 
step.  
–  the matrix D can be factored once and used for 

each pass 

• Jacobi advances the solution one row at a 
time not using the new values in theprevious 
row.  

• GS advances the solution but uses the new 
values in the previous row. 



Alternating Direction Methods 

• Apply GS from bottom to top and then reverse 
direction and go from top to bottom.  

• Sweep GS from left to right and then from 
right to left operating on the columns of the 
computational mesh rather than the rows.  

• Methods are called Alternating Direction 
Implicit (ADI) methods. 



Effect of Denormal Numbers 

• Recall denormal number are floating point 
numbers smaller than machine epsilon.  

• Care must be taken in how computational grid 
is initialized.  
– Initialize to zero 

– Initialize to some number larger than mach eps. 

• Early computations in corners of zero 
initialized grid cause denormal numbers to 
appear. 



Effect of Denormal Numbers 
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Iteration 

Iteration Times 

normal

denormal



Solution 


