CS357:Final Exam Study Guide

Use these questions as a guide. The final exam will cover all material. The exam is Friday, December 20. 7 pm - 10 pm. Bring your ID. You are allowed a single crib sheet as per the midterm exams.

The questions do not represent all questions on the final exam.

1. Using a Taylor Series approximation of $f(x) = \sin(x)$ about $x_0 = 0$, how many **nonzero** terms are necessary in order to guarantee an absolute error of 10^{-7} at x = 1/10? You may find the following useful:

n	1	2	3	4	5	6	7	8	9	10
n!	1	2	6	24	120	720	5040	40320	362880	3628800
(a)	2 t	erm	s							
(b)	4 te	erm	s							
(c)	6 t	erm	\mathbf{s}							
(d)	8 te	erm	\mathbf{s}							
Whi	ch c	one o	of tł	ne fol	lowing	g is tru	ie abou	t the IE	EE-754 fl	oating poir

- (a) There are only a finite number of machine representations.
- (b) Adding a list of numbers does not depend on the order in which they are summed.
- (c) The floating point representations are uniformly distributed on the real line with a hole at zero.
- (d) The methods of rounding (e.g. chopping, round-to-nearest, etc) result in the same relative error.
- 3. Consider the following Python script:

2.

What is the outcome?

- (a) The lowest representable floating point is returned since the while loop is not entered.
- (b) $+\infty$ is returned after the while loop overflows.
- (c) ϵ_m is returned
- (d) the while loop never returns
- 4. True or False Machine epsilon, ϵ_m , is the smallest representable positive floating point number in double precision.
- 5. True or False The bisection method converges for finding a root of $f(x) = 2x^5 1$ in the interval [0, 1].
- 6. True or False Suppose that bisection method converges to a root of a function g(x) in the interval [0, 1]. How many iterations are needed to ensure that the approximate root is accurate to within 10^{-6} ? ($\log_{10}(2) \approx .3$).
 - (a) 5
 - (b) 10
 - (c) 15
 - (d) 20
 - (e) 25

- 7. Given a starting guess of $x_0 = 5$, what is an approximation to a root of $f(x) = x^2 4$ using one step of Newton's method?
 - (a) 2
 - (b) 2.1
 - (c) 2.9
 - (d) 95/21
 - (e) 7.1
- 8. Given starting guesses of $x_0 = 0$ and $x_1 = 3$, what is an approximation to a root of $f(x) = x^2 4$ using one step of the Secant method?
 - (a) -5/3
 - (b) 2
 - (c) 4/3
 - (d) 10/3
 - (e) $+\infty$
- 9. True or False When Newton's method converges it is always quadratic convergence.
- 10. **True or False** The convergence rate of the Secant method is slower than Newton, but requires fewer function evaluations per iteration.
- 11. When interpolating a distinct data set of 6 values, the degree of a Lagrange basis function used in interpolation is
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5
 - (e) 6

12. The Newton form of the quadratic interpolant of $f(x) = \frac{12}{2+x}$ using x = 0, 1, 2 is

- (a) $p_2(x) = 6 2x + 1/2x(x-1)$
- (b) $p_2(x) = 6 4x + 3x(x-1)$
- (c) $p_2(x) = 6 2x + 3/2x(x-1)$
- (d) $p_2(x) = 6x(x-1) 2x + 1/2$
- 13. **True or False** The Newton form of a polynomial interpolant of a given set of data is *less expensive* to construct *and* is better conditioned on evaluation than the monomial form of the polynomial.
- 14. Which one of the following is **not** true of the Lagrange form of an interpolating polynomial?
 - (a) The construction of the coefficients is inexpensive.
 - (b) The evaluation at any point is efficient through Horner's method.
 - (c) The evaluation at any point is well conditioned.
- 15. Consider the following interpolant (dashed) of the step function (solid) through the uniform nodes (circles).

Which one of the following is **not** likely?

- (a) Increasing the number of points (with uniform spacing) will improve the dashed interpolant.
- (b) The interpolant can be improved through non-uniform nodes (e.g. Chebychev)
- (c) A spline will resolve the step function more accurately.

16. What is the central difference approximation to f'(x) at x = 2 using a stepsize of h = 1 if $f(x) = x^3$?

- (a) 7
- (b) 13
- (c) 19
- (d) 35

17. Suppose we use numerical differentiation of $f(x) = \cos(x)$ at $x = \pi/6$ and find the following results:

h	$D_h f(x)$	Error
0.1	-0.54243	0.04243
0.05	-0.52144	0.02144
0.025	-0.51077	0.01077
0.0125	-0.50540	0.00540
0.00625	-0.50270	0.00270
0.003125	-0.50135	0.00135

The convergence is

(a) $\mathcal{O}(h^{1/2})$

- (b) $\mathcal{O}(h)$
- (c) $\mathcal{O}(h^2)$
- (d) $\mathcal{O}(h^3)$
- 18. **True or False** The degree of precision of the basic Trapezoid method is 1 while the degree of precision of the basic Simpson method is 2.
- 19. True or False The 4-point Gaussian Quadrature for the integral

$$\int_{-1}^{1} 3x^6 + 4x^5 + x^4 + x - 1 \, dx$$

is exact.

20. What is the numerical approximation to

$$\int_{-1}^{1} \frac{3}{2+x} \, dx$$

using basic trapezoid rule?

- (a) 0
- (b) 2
- (c) 4/3
- (d) 4
- 21. Given k knots and data points, what is the cost of computing the natural cubic spline?
 - (a) $\mathcal{O}(k)$
 - (b) $\mathcal{O}(k^2)$
 - (c) $\mathcal{O}(k^3)$
 - (d) $\mathcal{O}(1)$
- 22. True or False A cubic spline for k knots and data points is unique.
- 23. Suppose that A is a dense $n \times n$ matrix and that v is an $n \times 1$ vector. What is the computational cost of computing Av?
 - (a) $\mathcal{O}(1)$
 - (b) $\mathcal{O}(n)$
 - (c) $\mathcal{O}(n^2)$
 - (d) $\mathcal{O}(n^3)$
- 24. Suppose that A is a sparse (CSR) $n \times n$ matrix with at most 4 entries per row and that v is an $n \times 1$ vector. What is the computational cost of computing Av?
 - (a) $\mathcal{O}(1)$
 - (b) $\mathcal{O}(n)$
 - (c) $\mathcal{O}(n^2)$
 - (d) $\mathcal{O}(n^3)$
- 25. True or False The following matrix ill-conditioned

$$A = \begin{bmatrix} 4.4e10^{-8} & 0\\ 0 & 1.0e10^7 \end{bmatrix}$$

26. True or False The following matrix ill-conditioned

$$A = \begin{bmatrix} 4.4e10^8 & 0\\ 0 & 1.0e10^7 \end{bmatrix}$$

- 27. True or False Well conditioned matrices do not benefit from partial pivoting.
- 28. What is the added cost of scaled partial pivoting over naive Gaussian elimination?
 - (a) $\mathcal{O}(1)$
 - (b) $\mathcal{O}(n)$
 - (c) $\mathcal{O}(n^2)$
 - (d) $\mathcal{O}(n^3)$
- 29. Using scaled partial pivoting to solve the following matrix problem, what is the first pivot element?

$$Ax = \begin{bmatrix} 50 & 2 & 3 & 100 \\ 1 & 0 & 0 & 1000 \\ 2 & 1 & 1 & 10^{-2} \\ 10^{-2} & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = b$$

- (a) Row 1, Column 1
- (b) Row 1, Column 4
- (c) Row 2, Column 1
- (d) Row 3, Column 1
- (e) Row 4, Column 1
- 30. Suppose that we have already computed the LU factorization of a matrix A. To solve Ax = b, first solve Ly = b for y followed by solving Ux = y for x. What is the cost of this process (given the LU factorization beforehand)?
 - (a) $\mathcal{O}(1)$
 - (b) $\mathcal{O}(n)$
 - (c) $\mathcal{O}(n^2)$
 - (d) $\mathcal{O}(n^3)$
- 31. Consider the iterative solution to Ax = b using the Jacobi method with

$$A = \begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix} \quad b = \begin{bmatrix} 5 \\ -3 \\ -7 \\ 9 \end{bmatrix} \quad x_{exact} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$$

The method will converge for any initial guess

- (a) True
- (b) False
- 32. True or False The Power Method will converge for the following matrix

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -3 \end{bmatrix}.$$

- 33. True or False The convergence of Monte Carlo integration is the same in any dimension.
- 34. If A is an $m \times n$ matrix, what is the maximum number of nonzero singular values it can have?
 - (a) $\min\{m,n\}$
 - (b) $\max\{m, n\}$
 - (c) n
 - (d) m

35. Suppose we compute the SVD of a 2×3 matrix $A = USV^T$. Which one of the following is a candidate for U?

- (a) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$
- (d) All of the above.
- (e) None of the above.

36. Apply one iteration of the normalized power iteration to the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$$

using $x_0 = [1 \ 1]^T$ as an initial guess. After normalization, one entry of the resulting vector x_1 will be 1. What is the value of the other entry?

- (a) 0.0
- (b) 0.2
- (c) 0.4
- (d) 0.6
- (e) 0.8
- 37. True or False A symmetric matrix will always have positive, real eigenvalues.

Questions to ask yourself:

- 38. Define round-off error and truncation error. What is the difference?
- 39. What is machine epsilon?
- 40. How many terms of a Taylor series expansion (about c = 0) should we use to ensure that $f(x) = e^x$ is approximated to single precision accuracy ($\approx 10^{-7}$) when evaluating at the point $x = \frac{1}{10}$?
- 41. Interpolate $\frac{x \mid 0 \quad 1 \quad 2 \quad 3}{y \mid 0 \quad 0 \quad 4 \quad 24}$ using Newton interpolation. Detail two benefits of Newton-based interpolation (versus using monomials and Lagrange basis functions).
- 42. Consider the integral $\int_0^1 1 + x^2 dx$. Graphically depict numerical integration using basic Trapezoid and 2-point Gauss Quadrature (2 different graphs). Is one of the these methods more accurate? Is either of them *optimal* in some sense? Be sure to incorporate *degree-of-precision* into your discussion.
- 43. The following table results from numerically approximating a mathematical operation based on some mesh spacing h (here the nodes are evenly spaced x_0, \ldots, x_n in [a, b] with $h = x_1 x_0$). What do the results tell us about accuracy of the method? (for example order).

h	approximation value	Error
0.1	-0.49916708	-0.0008329
0.05	-0.49979169	-0.0002083
0.025	-0.49994792	-0.00005208
0.0125	-0.49998698	-0.00001302
0.00625	-0.49999674	-0.000003255

- 44. Give an example of a matrix that benefits from partial pivoting (either regular partial pivoting or scaled partial pivoting). Explain. Give an example of a matrix with both small and large entries that is *well conditioned* and one that is *ill-conditioned*. Justify.
- 45. Suppose we wish to integrate $\int_5^{10} e^{(x^2/100)} dx$ using Monte Carlo techniques. Sketch an algorithm and discuss the convergence.
- 46. Will Jacobi iteration converge for the following matrix problem?

$$\begin{bmatrix} 3 & -1 \\ -1 & 3 & -1 \\ & -1 & 3 & -1 \\ & \ddots & & \\ & \vdots & & \\ & & & -1 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

47. Run one step of Gauss-Seidel and one step of Jacobi iteration for the following problem Ax = b with $x_0 = [1, 1, 1]^T$, b = 0, and

$$A = \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2 \end{bmatrix}$$

- 48. What conditions on A are necessary for a Conjugate Gradient method?
- 49. Is the following matrix acceptible?

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- 50. True or False, the convergence speed of Jacobi and Gauss-Seidel iteration depends on the condition number of the matrix A. (for Conjugate Gradient?)
- 51. True or False, the power method finds the smallest eigenvalue-eigenvector pair of the matrix A.
- 52. Run a few steps of power iteration on the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

with initial guess $[1, 1, 1]^T$. Then run again with $[-1, -1, -1]^T$. What is happening? What conditions do we need on A for the power method to converge?

- 53. True or False, the inverse power method find the smallest eigenvalue-eigenvector pair of the matrix A.
- 54. Consider the SVD of matrix A which is $n \times m$. What are the dimensions of each matrix in $A = USV^T$?
- 55. What property does U have? The columns of U are the eigenvectors of?
- 56. What property does V have? The columns of V are the eigenvectors of?
- 57. What is the SVD of $A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix}$?
- 58. Suppose all but 3 singular values of an $n \times n$ matrix are less than 10^{-15} . What is the cost saving of storing a matrix in SVD form?
- 59. Suppose Ax = b is an $n \times m$ overdetermined system. The least-squares solution finds what?
- 60. Compare the condition number of the A versus $A^T A$.
- 61. Should we solve $A^T A x = A^T b$ directly? What else should we use?
- 62. Let A = QR. What are the properties of Q and R? How is Q constructed?
- 63. Suppose $y = [0, 1, 0, 0, \dots, 0]$. What is the inverse FFT of y?
- 64. What is the general cost of an FFT?
- 65. What is the cost of an FFT if the length of the sequence is $n = 2^k$?
- 66. What is the first component of DFT(x)?