
NetBeans IDE GUI How-To

Building Graphical User Interfaces is easy in an IDE such as NetBeans. Just follow these steps to create
an event driven application with a GUI front-end. These instructions will walk you through the creation
of the VowelCounterProject creation. Follow them carefully.

1. Create the Project:
a. Choose File | New Project from the menu bar.

b. In the Categories Pane, select the Java node. In the Projects pane choose Java Application.
Click Next.

c. Type VowelCounterProject in the Project Name field and accept the path to the project
location.

d. Leave Use Dedicated Folder for Storing Libraries deselected.

e. Deselect Create Main Class (this is very important!!!)

f. Click [Finish]

2. Build the GUI front end:
a. Right-click the VowelCounterProject node in the Projects window on the left of the workspace

and choose New | JFrame Form

b. Enter VowelCounterUI as the class name.

c. Enter my.vowelcounter as the package name.

d. Click [Finish]

The IDE creates the VowelCounterUI form and the VowelCounterUI class within the
VowelCounterProject application, and opens the VowelCounterUI form in the GUI Builder. The
my.vowelcounter package replaces the default
package.

3. Adding components: Making the Front End
If you do not see the Palette window in the upper right corner of the IDE, choose Windows > Palette.
a. Start by selecting a JPanel from the Palette and dropping it onto the JFrame. Stretch it to a size

similar to the picture above by pulling on the handles.

b. While the JPanel is selected, go to the properties window and click the ellipsis (...) button next
to Border to choose a border style.

c. In the Border dialog, select TitledBorder from the list, and type in Vowel Counter in the Title
field. (You may opt to choose a different font here if you wish.) Click OK to save the changes
and exit the dialog.

d. Looking at the screen shot above, add the remaining components from the Swing Controls
palette: a Text Area, five Labels, and two Buttons.

4. Naming the components: In this step we will rename the components and change the text that is
displayed on them.
a. right-click the JTextArea. Choose Change Variable Name from the context menu and type

inputBox in the text field and click [OK]

b. In the properties pane (with the text area still selected), check the boxes next to editable and
lineWrap. Change the text property to Enter some
text here.

c. right-click jLabel1. Choose Edit Text from the
context menu and type a's Found: in the text area
and Click [OK]

d. right-click the label again. This time Choose
Change Variable Name type aLabel in the text
area and click [OK]

e. Continue this procedure naming the remaining
labels: eLabel, iLabel, oLabel, uLabel, and the
buttons: countButton, and exitButton. Change the
text properties to reflect those in the screen shot:

Adding functionality: In this step we will add event handlers to the
button components and add code to the handlers
5. Making the exit button work:

a. right click the exit button. Choose Events | Mouse | Mouse Clicked.

b. the IDE will open up the Source Code window and scroll to where you implement the action you
want the button to do when the button is pressed by a mouse click.

c. replace the //TODO comment with the code:
System.exit(0);

6. Making the countButton work:
a. click the [Design] option to return to the GUI layout and the palette.

b. right click the countButton. Choose Events | Mouse | Mouse Clicked.

c. Again, the IDE will open up the Source Code window and scroll to where you implement the
action you want the button to do when the button is pressed by a mouse click.

d. Using the design below, code the method so that it counts the vowels in the input string -
comment your code so that you understand what each line does. You might want to look at the
String API for an explanation of getChars()

e. Test it using several phrases

Local vars: aCount, eCount, iCount, oCount, uCount (all initialized to 0)

 userInput (a String that is initialized to the contents of the text in the inputBox

Code: String userInput = inputBox.getText();
 charArray (an array of char long enough to hold the userInputString)

Code: char[] charArray = new char[userInput.length()];
 Convert the userInput String to an array of char and put it into charArray

Code: userInput.getChars(0, userInput.length(), charArray, 0);
 For each value of i starting at 0, while i < the length of the userInput String, i++

if the current character is equivalent to one of the 5 vowels

 increment the count variable for that vowel (nested if)

 Set the text of the aLabel to "a's Found: " + aCount

etc...

