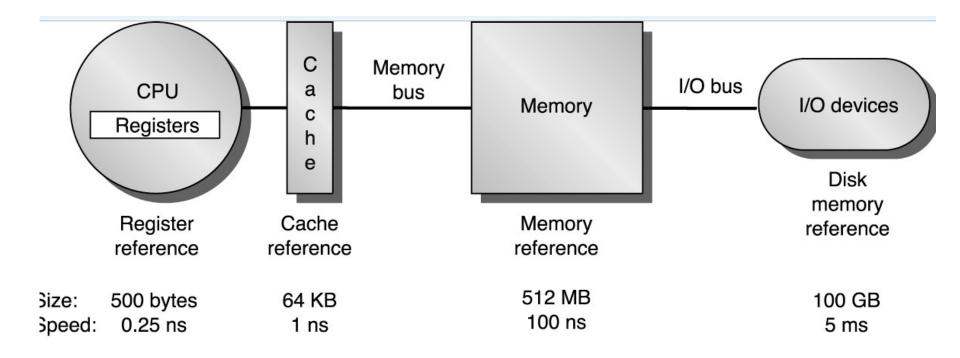
Matrix-vector product

• Matrix-vector multiplication

$$\mathbf{M} \bullet \mathbf{v} = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} & \mathbf{M}_{13} \\ \mathbf{M}_{21} & \mathbf{M}_{22} & \mathbf{M}_{23} \\ \mathbf{M}_{31} & \mathbf{M}_{32} & \mathbf{M}_{33} \end{bmatrix} \begin{bmatrix} \mathbf{v}_x \\ \mathbf{v}_y \\ \mathbf{v}_z \end{bmatrix}$$

- Recall how to do matrix multiplication
- How many operations does this matrix vector product take?
- How many operations does a general matrix vector product take?

Memory Hierarchy



Ways to implement a matrix vector product

- Access matrix
 - Element-by-element along rows
 - Element-by-element along columns
 - As column vectors
 - As row vectors
- Homework 1: Upload a single log-log graph of your results (with five different curves) on to
 Piazza. Use the code snippet provided, or your own

[m,n]=size(A); y = zeros(m,1); for i=1:m, for j=1:n, y(i) = y(i) + A(i,j)*x(j); end end

Binary Representation: Bits

- Computer memory is binary
- A bit is a single binary digit that can take on one of the two values 0 and 1.

 $437 = 1 \times 256 + 1 \times 128 + 0 \times 64 + 1 \times 32 + 1 \times 16 + 0 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$ = 2⁸+2⁷+2⁵+2⁴+2²+2⁰=110110101

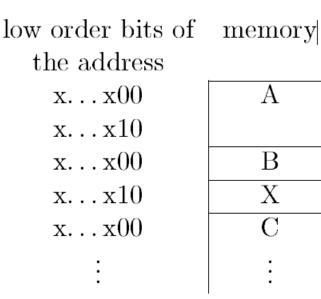
- $0.625 = 1 \times 0.5 + 0 \times 0.25 + 1 \times 0.125 = 2^{-1} + 2^{-3} = 0.101$
- A byte is a group of eight bits.
 - Since a hexadecimal digit (base 16) can be represented by four bits, bytes can be described by pairs of hexadecimal digits.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8,
 - 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000
 - 9, A (10), B(11), C(12), D(13), E(14), F(15)
 - 1001, 1010, 1011, 1100, 1101, 1110, 1111
 - 01011110_2 may be represented by the number $5E_{16}$,

Words & Addresses

- Memory locations on a 32 bit machine, usually consist of 4 bytes => called a word
- Relationship between words and data of various sizes:
 - byte 8bits, 1 byte
 - word 32bits, 4 bytes
 - long or double word 64 bits, 8 bytes
- Memory is addressed using an index, which is itself a binary number
- Addresses, usually are available for every byte
- Addresses can be grouped by bit-shifts
 - byte xx...xxxx
 - half word xx...xxx0
 - word xx...xx00
 - double word xx...x000
- Recall that words/memory are shipped across a bus
 - Contiguous blocks can be loaded easier

Memory fragmentation

- Usually memory is allocated in chunks of a word or of two words
- If the data, e.g. a C-struct or a Fortran 90 Type may consists of a mixture of a four byte variable, a two byte variable and a four byte variable
- This will cause wastage of two bytes due to memory fragmentation



Bit operations

- Very efficient set of operations that are provided in processors, and that have representations in programming languages
- May return to these in a later class

Unsigned Integers

- On a machine nonnegative integers can be represented by regarding the bits in a word as a binary number, that is, an unsigned integer.
- Integers can be added, subtracted, multiplied, and divided.
- Addition and subtraction are the fastest operations.
- Multiplication can be almost as fast as addition.
- Division is much slower.
- However, multiplication and division by two can be implemented using shifts

Exceptions

- We have an arithmetic system which is not closed under the normal set of operations.
- Consider 4 bit arithmetic
- $13_{10} + 5_{10} = 1101_2 + 0101_2 = 10010_2$
- the above sum is not representable in 4 bits
- This situation is called an arithmetic exception.
- Arithmetic exceptions can be handled by an automatic default or by trapping to an exception handler.
- In some situations, when we are performing calculations modulo some number, we may discard the extra bit.
- This gives the answer $0010_2 = 2_{10}$ which is just $13 + 5 \pmod{16}$.
- In some applications this is just what we want.

Exception handling

- In others this is a wrong result and we need to use exception handling
- Operations leading to exceptions
 - a + b: Overflow
 - a b: Negative result, i.e., a < b
 - a*b: Overflow
 - a/b: Division by zero or noninteger result
- This may need to bring in logic that causes the process to stop, and bring in further information from main memory and may be computationally expensive.
- Fatal exceptions: cause process to abort
- Default handling: may be turned on
- For division it is generally agreed that division by zero is fatal
- There is also agreement about what to do when the result is not an integer
- E.g., $17/3 = 5.6667 \rightarrow 5$
- The exact quotient should be truncated toward zero.

Signed Integers

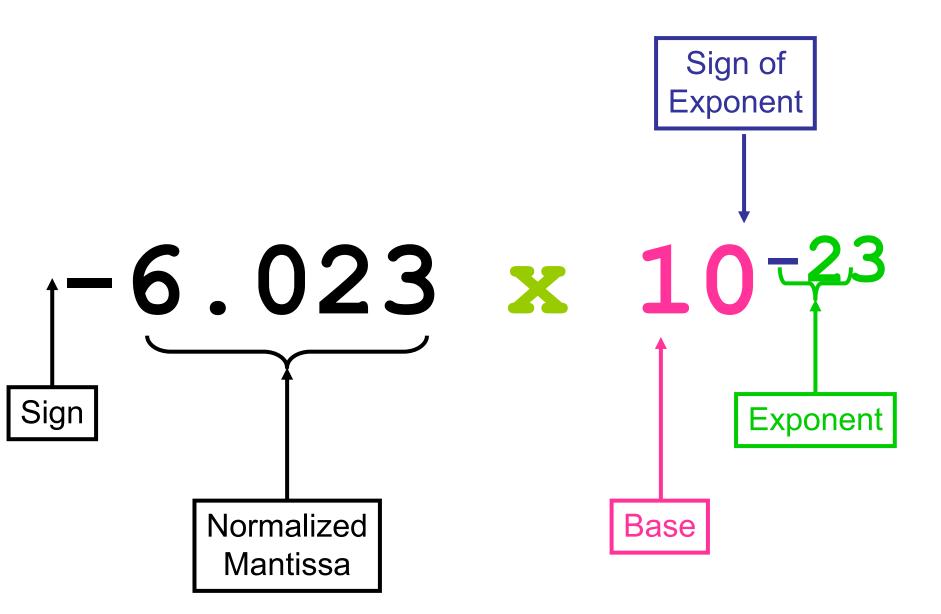
- Stored in a four byte word
- Can have two byte, byte, and 8 byte versions
- Need to figure out how to represent sign:
- Two approaches
 - Sign magnitude: if the first bit is zero, then the number is positive. Otherwise, it is negative. $x = \frac{x}{2}$
 - 0 0 1 1 Denotes +11.
 - 1011 Denotes -11.
 - Zero: Both $0\ 0\ 0\ 0$ and $1\ 0\ 0\ 0$ represent zero
 - Two's complement: If first bit is zero the number is positive, and it is the same as sign-magnitude
 - Negative numbers have a 1 in the first place
 - Value determined by subtraction of the number from 2^n .
 - There is one more negative number possible
- Two's complement representation seems unnatural, but in fact it is preferred
- Exceptions: Overflow/underflow

x	+x	-x		
0	0000			
1	0001	1111		
2	0010	1110		
3	0011	1101		
4	0100	1100		
5	0101	1011		
6	0110	1010		
7	0111	1001		
8		1000		

Floating point

- Attempt to
 - Handle decimal numbers
 - increase the range of numbers that can be represented
 - Provide a standard by which exceptions are consistently handled

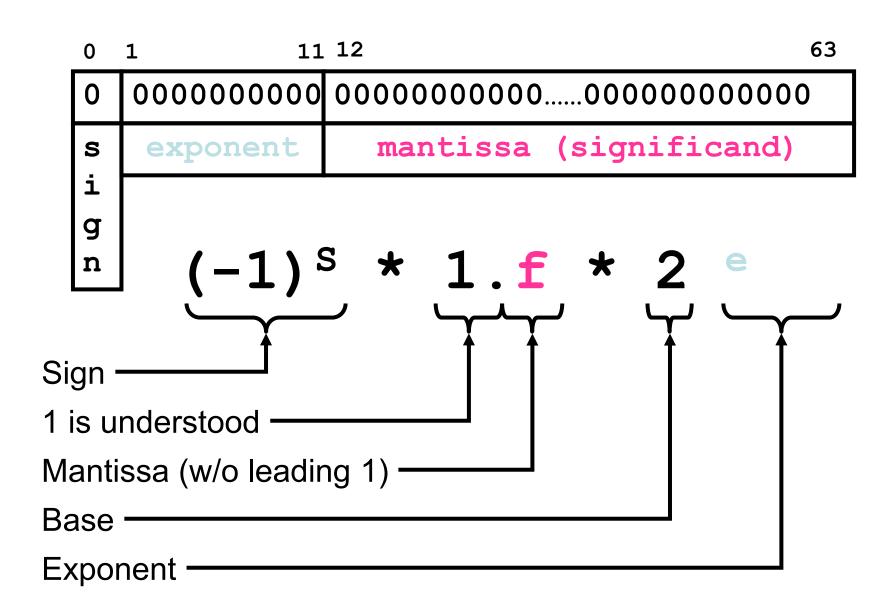
Scientific Notation



Floating point on a computer

- Need to represent numbers using fixed number of bits
- Base: Binary
- Divide bits into two numbers: mantissa and exponent
- Mantissa is "normalized"
- If we have infinite spaces to store these numbers, we can represent arbitrarily large numbers
- With a fixed number of spaces for the two numbers (mantissa and exponent)

IEEE-754 (double precision) – 64 bits



- $x = \pm (1+f) \times 2^e$
- $0 \cdot f < 1$
- $f = (\text{integer} < 2^{52})/2^{52}$
- $-1022 \le e \le 1023$
- e = integer

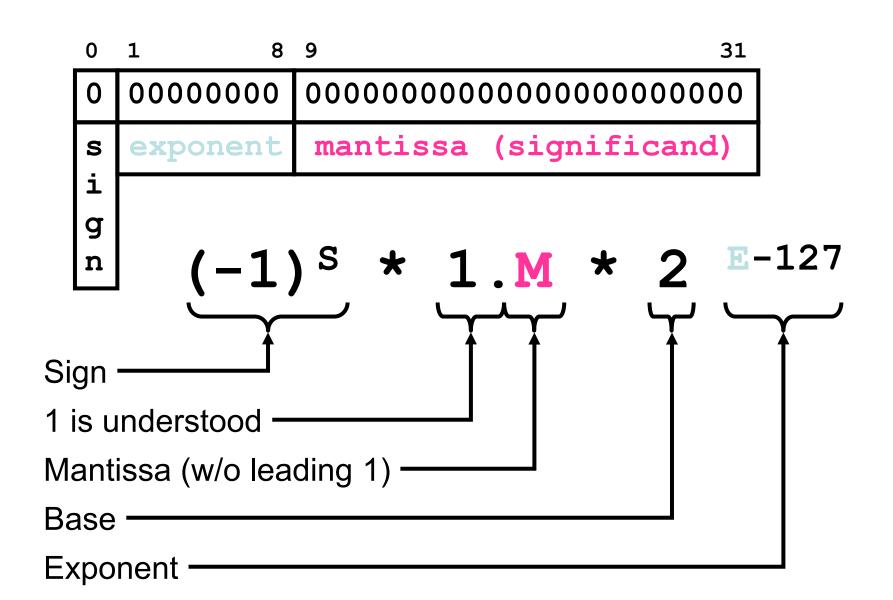
Special (Exceptional) Numbers

0	00000000000		00000000000000000000000000						
S	exponent		mantissa (significand)						
i g n	(-1	1) ^s * 2 ^E * 1.f							
		E+1023 == 0		0 < E+1023 < 2047	E+1023 == 2047				
f==0		0		Powers of Two	∞				
f~=0		Non-normalized typically underflow		Floating point Numbers	Not A Number				

Floating point exceptions

- Underflow
- Overflow
- Division by zero
- NaN: 0/0, $\infty \times 0$, or sqrt(-number).

IEEE-754 (single precision) -32 bits



Effects of floating point

Finite f implies finite precision.

Finite *e* implies finite *range*

Floating point numbers have discrete spacing, a maximum and a minimum.

Effects of floating point

- eps is the distance from 1 to the next larger floating-point number.
- $eps = 2^{-52}$
- In Matlab

Binaryeps2^(-52)realmin2^(-1022)realmax (2-eps)*2^1023

Decimal 2.2204e-16 2.2251e-308 1.7977e+308

Rounding vs. Chopping

- **Chopping**: Store x as c, where |c| < |x| and no machine number lies between c and x.
- **Rounding**: Store x as r, where r is the machine number closest to x.
- IEEE standard arithmetic uses rounding.

Machine Epsilon

- Machine epsilon is defined to be the smallest positive number which, when added to 1, gives a number different from 1.
 - Alternate definition (1/2 this number)
- Note: Machine epsilon depends on d and on whether rounding or chopping is done, but does not depend on m or M!

Some numbers cannot be exactly represented $\frac{1}{10} = \frac{1}{2^4} + \frac{1}{2^5} + \frac{0}{2^6} + \frac{0}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{0}{2^{10}} + \frac{0}{2^{11}} + \frac{1}{2^{12}} + \dots$ $t = (1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \dots + \frac{9}{16^{12}} + \frac{10}{16^{13}}) \cdot 2^{-4}$

