Matrix-vector product

Matrix-vector multiplication

Recall how to do matrix multiplication

How many operations does this matrix vector product
take?

How many operations does a general matrix vector product
take?

Memory Hierarchy

Memory
bus

C
CPU a
Registers ﬁ
e
Register Cache
reference reference
Size: 500 bytes 64 KB

speed: 0.25ns 1ns

Memory

Memory
reference

512 MB
100 ns

I/0 bus /
I/0O devices

Disk
memory
reference

100 GB
5ms

Ways to implement a matrix vector product

e Access matrix

— Element-by-element
along rows

— Element-by-element
along columns

— As column vectors

— As row vectors

 Homework 1: Upload a
single log-log graph of
your results (with five
different curves) on to
Piazza. Use the code
snippet provided, or
your own

[m,n]=size(A);
y = zeros(m,1);
for i=1:m,
for j=1:n,
y(i) = y(i) + A(i,j)*x(j);
end
end

[m,n]=size(A);
y = zeros(m,1);

for i=1:m,
y(i) = A(di,:) * x;
end

[m,n]=size(A);
y = zeros(m,1);
for j=1:n,
y =y + AC,j)*x(j);
end

Binary Representation: Bits

e Computer memory 1s binary

e A bit 1s a single binary digit that can take on one of the
two values 0 and 1.

437=1%256+1x128+0x64+1%32+1x16+0x8+1x4+0%x2+1x1
=28+27+2°+24+2°2+20=110110101

¢ 0.625=1x0.5+0%0.25+1x0.125=2-1+2-3=0.101

* A byte 1s a group of eight bits.

— Since a hexadecimal digit (base 16) can be represented by four

bits, bytes can be described by pairs of hexadecimal digits.
-0, 1, 2, 3 4 5 6 1, 8,
—~ 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000
~ 9, A(10), B(11), C(12), D(13), E(14), F(15)
~ 1001, 1010, 1011, 1100, 1101, 1110, 1111
— 01011110, may be represented by the number 5E

Words & Addresses

Memory locations on a 32 bit machine, usually consist of 4 bytes => called a
word
Relationship between words and data of various sizes:
— byte 8bits, 1 byte
— word 32bits, 4 bytes
— long or double word 64 bits, 8 bytes
Memory is addressed using an index, which is itself a binary number
Addresses, usually are available for every byte
Addresses can be grouped by bit-shifts
— byte XX...XxXxx
— half word xx...xxx0
— word xx...xx00
— double word xx...x000
Recall that words/memory are shipped across a bus
— Contiguous blocks can be loaded easier

Memory fragmentation

« Usually memory is allocated in low order bits of memory]
chunks of a word or of two words th}‘; ‘“1;1;(‘}“" .
 If the data, e.g. a C-struct or a Fortran <« %10
90 Type may consists of a mixture of x. .. x00 B
a four byte variable, a two byte x...x10 X
variable and a four byte variable X. .. x00 C
» This will cause wastage of two bytes

due to memory fragmentation

Bit operations

* Very efficient set of operations that are provided 1n
processors, and that have representations in programming
languages

* May return to these 1n a later class

Unsigned Integers

On a machine nonnegative integers can be
represented by regarding the bits 1n a word as a
binary number, that 1s, an unsigned integer.

Integers can be added, subtracted, multiplied, and
divided.

Addition and subtraction are the fastest
operations.

Multiplication can be almost as fast as addition.
Division 1s much slower.

However, multiplication and division by two can
be implemented using shifts

Exceptions

We have an arithmetic system which 1s not closed under
the normal set of operations.

Consider 4 bit arithmetic
13,,+5,,=1101,+0101,=10010,

the above sum 1s not representable 1n 4 bits
This situation 1s called an arithmetic exception.

Arithmetic exceptions can be handled by an automatic
default or by trapping to an exception handler.

In some situations, when we are performing calculations
modulo some number, we may discard the extra bit.

This gives the answer 0010, = 2,, which 1s just 13 + 5
(mod 16).

In some applications this is just what we want.

Exception handling

In others this 1s a wrong result and we need to use exception handling

Operations leading to exceptions
— a—+ b: Overflow
— a- b: Negative result, 1.e.,a<b
— a*b: Overflow
— a/b: Division by zero or noninteger result

This may need to bring in logic that causes the process to stop, and bring in
further information from main memory and may be computationally
expensive.

Fatal exceptions: cause process to abort

Default handling: may be turned on

For division it 1s generally agreed that division by zero is fatal

There 1s also agreement about what to do when the result is not an integer
E.g., 17/3=5.6667 -> 5

The exact quotient should be truncated toward zero.

Signed Integers

Stored 1n a four byte word
Can have two byte, byte, and 8 byte versions
Need to figure out how to represent sign:

Two approaches

— Sign magnitude: if the first bit 1s zero, then the number 1s
positive. Otherwise, it 1s negative.

« 001 I Denotes +11.
« 1011 Denotes -11.
e Zero: Both000O0 and 1 000 represent zero

— Two’s complement: If first bit is zero the number 1s
positive,
and 1t 1s the same as sign-magnitude

— Negative numbers have a 1 in the first place
— Value determined by subtraction of the number from 22,
— There 1s one more negative number possible

 Two's complement representation seems
unnatural, but in fact it 1s preferred

* Exceptions: Overflow/underflow

€T +@ —&
0 0000

1 0001 1111
2 0010 1110
3 0011 1101
4 0100 1100
o 0101 1011
6 0110 1010
7 0111 1001
8 1000

Floating point

e Attempt to

— Handle decimal numbers
— 1ncrease the range of numbers that can be represented

— Provide a standard by which exceptions are consistently
handled

Scientific Notation

Sign of
Exponent

-6.023 13TB

‘ Sign \ Exponent

Normalized Base
Mantissa

Floating point on a computer

Need to represent numbers using fixed number of bits
Base: Binary

Divide bits into two numbers: mantissa and exponent
Mantissa 1s “normalized”

If we have infinite spaces to store these numbers, we
can represent arbitrarily large numbers

With a fixed number of spaces for the two numbers
(mantissa and exponent)

IEEE-754 (double precision) — 64 bits

1 11 12 63

0000000000{00000000000....000000000000

mantissa (significand)

1 2
\ ¥ J _x_’ g“,_J
Sign ‘
1 is understood

Mantissa (w/o leading 1)
Base

Exponent

x =£(1+f)x 2°¢
0-f<1
f= (integer < 2°%)/25?

-1022 < e=1023

e = Integer

Special (Exceptional) Numbers

0O [00000000000}|000000000000......000000000000000
S mantissa (significand)
i
gl(=-1)% * 2 * 1.f
n
E+1023 == 0 < E+1023 < 2047 E+1023 == 2047
Powers
==() 0 of 00
Two
Non-normalized | Floating point Not
f~=0 typically Numbers A
underflow Number

Floating point exceptions

Underflow

Overflow

Division by zero

NaN: 0/0, 0x0, or sqrt(—number).

IEEE-754 (single precision) — 32 bits

1 8 9 31
00000000 |00000000000000C0O00O0O0O00NO

mantissa (significand)

(-1)S * 1.M * 2 -127

Sign

1 is understood
Mantissa (w/o leading 1)
Base

Exponent

Effects of floating point
Finite f implies finite precision.
Finite e implies finite range

Floating point numbers have discrete spacing,
a maximum and a minimum.

Effects of floating point

* eps is the distance from 1 to the next larger floating-point
number.

¢ eps =272
e In Matlab
Binary Decimal
eps 27 (-52) 2.2204e-16
realmin 2"(-1022) 2.2251e-308

realmax (2-eps)*2*1023 1.7977e+308

Rounding vs. Chopping

Chopping: Store x as ¢, where |c| < |x| and no machine
number lies between ¢ and x.

Rounding: Store x as r, where r 1s the machine number
closest to x.

IEEE standard arithmetic uses rounding.

Machine Epsilon

 Machine epsilon 1s defined to be the smallest positive
number which, when added to 1, gives a number different
from 1.

— Alternate definition (1/2 this number)

e Note: Machine epsilon depends on d and on whether

rounding or chopping 1s done, but does not depend on m
or M!

Some numbers cannot be exactly

represented
1 ,1,0,0,1,1,0 [0, 1
24 ! 25 ! 26 ! 27 ! 28 ! 29 ! 210 ! 211 ! 212 b
-9 9 9 9 10 e
16 162 163 1612 7 1613

1; while 14x > 1, x x/2, pause(.02), end

1; while x+x > x, x = 2*x, pause(.02), end

1; while x+x > x, x = x/2, pause(.02), end

