
Matrix-vector product

• Matrix-vector multiplication

• Recall how to do matrix multiplication

• How many operations does this matrix vector product
take?

• How many operations does a general matrix vector product
take?



































z

y

x

v

v

v

MMM

MMM

MMM

vM

333231

232221

131211

Memory Hierarchy

Ways to implement a matrix vector product

• Access matrix

– Element-by-element

along rows

– Element-by-element

along columns

– As column vectors

– As row vectors

• Homework 1: Upload a

single log-log graph of

your results (with five

different curves) on to

Piazza. Use the code

snippet provided, or

your own

Binary Representation: Bits

• Computer memory is binary

• A bit is a single binary digit that can take on one of the
two values 0 and 1.

437=1×256+1×128+0×64+1×32+1×16+0×8+1×4+0×2+1×1

=28+27+25+24+22+20 =110110101

• 0.625=1×0.5+0×0.25+1×0.125=2-1+2-3 = 0.101

• A byte is a group of eight bits.

– Since a hexadecimal digit (base 16) can be represented by four
bits, bytes can be described by pairs of hexadecimal digits.

– 0, 1, 2, 3, 4, 5, 6, 7, 8,

– 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000

– 9, A (10), B(11), C(12), D(13), E(14), F(15)

– 1001, 1010, 1011, 1100, 1101, 1110, 1111

– 010111102 may be represented by the number 5E16,

Words & Addresses

• Memory locations on a 32 bit machine, usually consist of 4 bytes => called a
word

• Relationship between words and data of various sizes:

– byte 8bits, 1 byte

– word 32bits, 4 bytes

– long or double word 64 bits, 8 bytes

• Memory is addressed using an index, which is itself a binary number

• Addresses, usually are available for every byte

• Addresses can be grouped by bit-shifts

– byte xx...xxxx

– half word xx...xxx0

– word xx...xx00

– double word xx...x000

• Recall that words/memory are shipped across a bus

– Contiguous blocks can be loaded easier

Memory fragmentation

• Usually memory is allocated in

chunks of a word or of two words

• If the data, e.g. a C-struct or a Fortran

90 Type may consists of a mixture of

a four byte variable, a two byte

variable and a four byte variable

• This will cause wastage of two bytes

due to memory fragmentation

Bit operations

• Very efficient set of operations that are provided in

processors, and that have representations in programming

languages

• May return to these in a later class

Unsigned Integers
• On a machine nonnegative integers can be

represented by regarding the bits in a word as a
binary number, that is, an unsigned integer.

• Integers can be added, subtracted, multiplied, and
divided.

• Addition and subtraction are the fastest
operations.

• Multiplication can be almost as fast as addition.

• Division is much slower.

• However, multiplication and division by two can
be implemented using shifts

Exceptions

• We have an arithmetic system which is not closed under
the normal set of operations.

• Consider 4 bit arithmetic

• 1310 +510 =11012+ 01012=100102

• the above sum is not representable in 4 bits

• This situation is called an arithmetic exception.

• Arithmetic exceptions can be handled by an automatic
default or by trapping to an exception handler.

• In some situations, when we are performing calculations
modulo some number, we may discard the extra bit.

• This gives the answer 00102 = 210 which is just 13 + 5
(mod 16).

• In some applications this is just what we want.

Exception handling

• In others this is a wrong result and we need to use exception handling

• Operations leading to exceptions
– a + b: Overflow

– a - b: Negative result, i.e., a < b

– a*b: Overflow

– a/b: Division by zero or noninteger result

• This may need to bring in logic that causes the process to stop, and bring in
further information from main memory and may be computationally
expensive.

• Fatal exceptions: cause process to abort

• Default handling: may be turned on

• For division it is generally agreed that division by zero is fatal

• There is also agreement about what to do when the result is not an integer

• E.g., 17/3 = 5.6667 -> 5

• The exact quotient should be truncated toward zero.

Signed Integers

• Stored in a four byte word

• Can have two byte, byte, and 8 byte versions

• Need to figure out how to represent sign:

• Two approaches
– Sign magnitude: if the first bit is zero, then the number is

positive. Otherwise, it is negative.
• 0 0 1 1 Denotes +11.

• 1 0 1 1 Denotes -11.

• Zero: Both 0 0 0 0 and 1 0 0 0 represent zero

– Two’s complement: If first bit is zero the number is
positive,
and it is the same as sign-magnitude

– Negative numbers have a 1 in the first place

– Value determined by subtraction of the number from 2n.

– There is one more negative number possible

• Two's complement representation seems
unnatural, but in fact it is preferred

• Exceptions: Overflow/underflow

Floating point

• Attempt to

– Handle decimal numbers

– increase the range of numbers that can be represented

– Provide a standard by which exceptions are consistently

handled

Scientific Notation

-6.023 x 10-23

Sign

Normalized

Mantissa

Base

Exponent

Sign of

Exponent

Floating point on a computer

• Need to represent numbers using fixed number of bits

• Base: Binary

• Divide bits into two numbers: mantissa and exponent

• Mantissa is “normalized”

• If we have infinite spaces to store these numbers, we

can represent arbitrarily large numbers

• With a fixed number of spaces for the two numbers

(mantissa and exponent)

IEEE-754 (double precision) – 64 bits

0 0000000000 00000000000……000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 1.f * 2 e

Sign

1 is understood

Mantissa (w/o leading 1)

Base

Exponent

0 1 11 12 63

• x = ±(1+f)× 2e

• 0 · f < 1

• f = (integer < 252)/ 252

• -1022 ≤ e ≤ 1023

• e = integer

Special (Exceptional) Numbers

0 00000000000 000000000000……000000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 2 E * 1.f

Non-normalized

typically

underflow

Floating point

Numbers

0
Powers

of

Two


E+1023 == 0 0 < E+1023 < 2047 E+1023 == 2047

f==0

f~=0
Not

A

Number

Floating point exceptions

• Underflow

• Overflow

• Division by zero

• NaN: 0/0, ∞×0, or sqrt(−number).

IEEE-754 (single precision) – 32 bits

0 00000000 00000000000000000000000

s

i

g

n

exponent mantissa (significand)

(-1)S * 1.M * 2 E-127

Sign

1 is understood

Mantissa (w/o leading 1)

Base

Exponent

0 1 8 9 31

Effects of floating point

Effects of floating point

• eps is the distance from 1 to the next larger floating-point

number.

• eps = 2-52

• In Matlab

Binary Decimal

eps 2^(-52) 2.2204e-16

realmin 2^(-1022) 2.2251e-308

realmax (2-eps)*2^1023 1.7977e+308

Rounding vs. Chopping

• Chopping: Store x as c, where |c| < |x| and no machine

number lies between c and x.

• Rounding: Store x as r, where r is the machine number

closest to x.

• IEEE standard arithmetic uses rounding.

Machine Epsilon

• Machine epsilon is defined to be the smallest positive

number which, when added to 1, gives a number different

from 1.

– Alternate definition (1/2 this number)

• Note: Machine epsilon depends on d and on whether

rounding or chopping is done, but does not depend on m

or M!

Some numbers cannot be exactly

represented

