
9/11/2013 

1 

IEEE-754 (double precision) – 64 bits 

0 0000000000 00000000000……000000000000 

s 

i 

g 

n 

exponent mantissa (significand) 

(-1)S * 1.f * 2 e 

Sign 

1 is understood 

Mantissa (w/o leading 1) 

Base 

Exponent 

0 1           11 12                               63 

Effects of floating point 
• x = ±(1+f)× 2e 

• 0 · f < 1 

• f = (integer < 252)/ 252 

• -1022 ≤ e ≤ 1023 

• e = integer 
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Special floating point numbers 

• eps is the distance from 1 to the next larger floating-point 

number.  

• eps = 2-52  

• In Matlab  

   Binary   Decimal 

eps   2^(-52)  2.2204e-16 

realmin  2^(-1022)  2.2251e-308 

realmax (2-eps)*2^1023 1.7977e+308 

 

Floating point exceptions 

• Underflow 

• Overflow 

• Division by zero 

• NaN: 0/0, ∞×0, or sqrt(−number).  
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Special (Exceptional) Numbers 

0 00000000000 000000000000……000000000000000 

s 

i 

g 

n 

exponent mantissa (significand) 

(-1)S * 2 E * 1.f 

Non-normalized 

typically 

underflow 

Floating point 

Numbers 

0 
Powers 

of 

Two 
 

E+1023 == 0 0 < E+1023 < 2047 E+1023 == 2047 

f==0 

f~=0 
Not 

A 

Number 

Three Loops 

 

 

 

 

 

• Loop 1 executes 52 times -- > corresponds to mantissa 

size 

• Loop 2 executes 1024 times … effectively increasing 

exponent till it reaches inf 

• Loop 3 executes 1075 times 
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Effects of floating point errors 

• Singular equations will  

only be nearly singular 

• Severe cancellation errors can  

occur 

 

 

x = 0.988:.0001:1.012; 

y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1; 

plot(x,y) 

Error Analysis  

• Computations should be as accurate and as error-free as 

possible 

• Sources of error: 

– Poor models of a physical situation 

– Ill-posed problems 

– Errors due to representation of numbers on a computer and 

successive operations with these 

• How do we analyze an algorithm for correctness? 

– Forward error analysis 

– Backward error analysis 

• Well posedness 
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Error definition 

• Computation should have result: c 

• Actual result is: x 

• Absolute error= |x – c| 

• Relative error = |x-c|/ |x|  for x≠0 

• x= (c)(1+rel_err)  

 

• Usually we do not know c  

– No need to solve the problem if we already knew it! 

• Error analysis tries to estimate abs_err and rel_err using 

computed result x  and knowledge of the algorithm and 

data 

Errors due to round off in addition 

• Errors can be magnified during computation. 

• Example: 2.003 x 100 (suppose ± .001 or .05% error) 

         - 2.000 x 100 (suppose ± .001 or .05% error) 

• Result of subtraction: 0.003 x 100  

• but true answer could be as small as 2.002 - 2.001 = 

0.001, or as large as 2.004 - 1.999 = 0.005! 

• So error in the answer is as much as (± .002 or 200% 

error if true answer is 0.001) 

• Called: Catastrophic cancellation, or “loss of 

significance” 
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Addition: 

• We could generalize this example to prove a theorem: 

 

• When adding or subtracting, the bounds on absolute 

errors add. 

Multiplication/Division 

• What if we multiply or divide? 

• Suppose x and y are the true values, and X and Y are our 

approximations to them. If 

X = x (1 - r) and Y = y (1 - s) 

then r is the relative error in x and s is the relative error in y.  

 

Can show that 

 

 

• If r and s are small, then we can ignore |rs| term 



9/11/2013 

7 

Rules of thumb 

• Addition/subtraction: Bounds on absolute errors add 

 

• Multiplication/Division: Bounds on relative errors add 

 

• One way to analyze the algorithm is to assume, this error 

occurs in each arithmetic operation 

• Worst case analysis 

• Such error bounds (forward error bounds) are often 

pessimistic 

Modeling 

• Original mathematical models may be poorly specified 
or unavailable 

– E.g. Newton’s laws work for non relativistic dynamics 

– Turbulence 

– … 

• Computing with a poor model will lead to inevitable 
errors 

• Quantities that are measured may be done so with error 
and bias 

– Using them in computation will lead to errors 
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Errors are inevtiable 

• Each step is characterized by some error 

1. Measurement errors:  

2. Errors in properties 

3. Inexact mathematical models  

4. Discretization errors: something continuous is 

represented discretely 

5. Errors in the solution to discrete representations of 

numbers 

 

 

Error Analysis 

• Two primary techniques of error analysis 

– Forward Error Analysis 

• Floating-point representation of the error is subjected to the same mathematical 

operations as the data itself. 

– Equation for the error itself 

– Backward Error Analysis 

• Attempt to regenerate the original mathematical problem from previously 

computed solutions 

– Minimizes error generation and propagation 

• Design algorithms to minimize errors 

• Estimate errors based on knowledge of algorithm 

– Error Analysis – forward and backward 
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Error Analysis 

•  Forward and Backward error analysis 

• Forward error analysis 

– Assume that the problem we are solving is exactly specified 

– Produce an approximate answer using the  algorithm considered 

 

 

 

 

 

 

 

– Goal of forward error analysis produce region guaranteed to 
contain true soln. 

– Report region and computed solution 

* 
True problem 

* 
True solution 

(unknown) # 

Computed 

solution 

(known) 

Backward error analysis 
• We know that our problem specification itself has error (“error in 

initial data”) 

• So while we think we are solving one problem we are actually 

solving another 

 

 

 

 

 

 

 

• Given an answer, determine how close the problem actually solved 

is to the given problem. 

• Report solution and input region 

 

* 
True problem 

(known) 

* 

# 

Unknown problem 

(the one actually solved) 

True Solution 

(Unknown) 
# 

Computed 

solution 

Region 

containing 

true 

problem 

and solved 

problem 
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Testing for Error Propagation 

• Use the computed solution in the original problem 

• Use Double or Extended Precision rather than Single 

Precision 

• Rerun the problem with slightly modified (incorrect) data 

and look at the results 

– Sensitivity analysis 

– If problem result changes a lot, perhaps the result is incorrect 

Well posed problems 

• Hadamard postulated that for a problem to be “well 

posed” 

1. Solution must exist 

2. It must be unique 

3. Small changes to input data should cause small changes to 

solution 

• Many problems in science result in “ill-posed” problems. 

– Numerically it is common to have condition 3 violated. 

– Problems which violate 3 are also called “ill-conditioned” 

• Converting ill-posed problem to well-posed one is called 

regularization. 

• Will discuss this later in the course when talking about 

optimization and Singular Value Decompositon. 
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Linear Algebra 

• Much of scientific computation involves modeling n-

tuples of numbers 

• Assumed to live in a linear vector space 

– Even non-linear problems are solved by linearization 

• Some interpretations of matrices and vectors 

• Matrix vector multiplication and complexity 

• Identity, Inverse, Singular Matrices 

• Permutation, Lower and Upper Triangular Matrices 

 

Vectors 

• Ordered set of numbers: (1,2,3,4) 

• Example: (x,y,z) coordinates of a pt in space. 

• The 16384 pixels in a 128×128  image of a face 

• Vectors usually indicated with bold lower case letters. Scalars 

with lower case  

• Usual operations assumed with vectors: 

– Addition operation u + v, with: 

• Identity 0  v + 0 = v 

• Inverse -  v + (-v) = 0 

– Scalar multiplication: 

• Distributive rule: a(u + v) = a(u) + a(v) 

      (a + b)u = au + bu  
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Vector Addition 

),(),(),( 22112121 yxyxyyxx wv

v 
w 

V+w 

Vector Spaces 

• A linear combination of vectors results in a new 
vector: 

   v = a1v1 + a2v2 + … + anvn 

• If the only set of scalars such that 

    a1v1 + a2v2 + … + anvn = 0 

    is   a1 = a2 = … = a3 = 0 

    then we say the vectors are linearly independent 

• The dimension of a space is the greatest number of linearly 
independent vectors possible in a vector set 

• For a vector space of dimension n, any set of n linearly 
independent vectors form a basis  
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Vector Spaces: Basis Vectors 

• Given a basis for a vector space: 

– Each vector in the space is a unique linear combination 
of the basis vectors 

– The coordinates of a vector are the scalars from this 
linear combination 

– Best-known example: Cartesian coordinates 
• Example 

– Note that a given vector v will have different 
coordinates for different bases 

Dot Product 

• The dot product or, more generally, inner product of two 
vectors is a scalar: 
   v1 • v2 = x1x2 + y1y2 + z1z2   (in 3D) 

• Useful for many purposes 
– Computing the length of a vector: length(v) = sqrt(v • v) 

– Normalizing a vector, making it unit-length 

– Computing the angle between two vectors: 

u • v = |u| |v| cos(θ) 

– Checking two vectors for orthogonality 

– Projecting one vector onto another 

θ 
u 

v 
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Vector norms 

2

2

2

( , , , )
1 2

Two norm (Euclidean norm)

2

1

If 1,   is a unit vector

Infinity norm

max( , , , )
1 2

One norm ("Manhattan distance")

1

v x x x
n

n
v x

i
i

v v

v x x x
n

n
v x

i
i





















For a 2 dimensional vector, write down the set of  vectors with two, one and infinity  

norm equal to unity 

Linear Transformations: Matrices 

• A linear transformation:  

– Maps one vector to another 

– Preserves linear combinations 

• Thus behavior of linear transformation is 
completely determined by what it does to a basis 

• Turns out any linear transform can be represented 
by a matrix  


