IEEE-754 (double precision) — 64 bits

1 11 12 63

0000000000]00000000000....000000000000

mantissa (significand)

sTQ | oOj©°

(-1)5 * 1.£ * 2

T Tr T
Sign

1 is understood
Mantissa (w/o leading 1)
Base
Exponent

Effects of floating point
x = x(1+f)x 2¢
0<f<1
f= (integer < 232)/2%
-1022 € e < 1023

* ¢ = integer

Finite f implies finite precision.

Finite e implies finite range

Floating point numbers have discrete spacing,
a maximum and a minimum.
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Special floating point numbers

* eps is the distance from 1 to the next larger floating-point

number.
o eps=2>2
* In Matlab
Binary Decimal
eps 27(-52) 2.2204e-16
realmin 27(-1022) 2.2251e-308

realmax (2-eps)*271023 1.7977e+308

Floating point exceptions

Underflow
Overflow

 Division by zero
NaN: 0/0, cox0, or sqrt(—number).



Special (Exceptional) Numbers

0 |00000000000|000000000000.....000000000000000
s mantissa (significand)
i
gl (-1)S * 2 * 1. .f
n
E+1023==0 |0 <E+1023 <2047|E+1023 == 2047
Powers
==() 0 of 00
Two
Non-normalized | Floating point Not
f~=0 typically Numbers A
underflow Number
Three Loops

ke
|

= 1; while 1+x > 1, x = x/2, pause(.02), end

= 1; while x+x > x, X

I
|

2%x, pause(.02), end

X 1; while x+x > x, x = x/2, pause(.02), end

Loop 1 executes 52 times -- > corresponds to mantissa
size

Loop 2 executes 1024 times ... effectively increasing
exponent till it reaches inf

Loop 3 executes 1075 times
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Effects of floating point errors
* Singular equations will T2y 4+ 5y = 22
only be nearly singular 1721 +0.525 = 2.2

» Severe cancellation errors can

A= [17 5; 1.7 0.5]
occur b = [22; 2.2]
x =0.988:.0001:1.012; x = A\b
y = XA7-T*x.26+21*x.A5-35"x.7M4+35*X.3-21*X."2+7*x-1;
plot(x,y) . produce
x =
-1.0588
8.0000

[
P S T S - S R R S

0.985 0.99 0.995 1 1.005 1.01 1.015

Error Analysis

Computations should be as accurate and as error-free as
possible

Sources of error:
— Poor models of a physical situation
— Ill-posed problems

— Errors due to representation of numbers on a computer and
successive operations with these

How do we analyze an algorithm for correctness?
— Forward error analysis
— Backward error analysis

Well posedness
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Error definition

Computation should have result: ¢

Actual result is: x

Absolute error= |x — ¢|

Relative error = |x-c|/ |x| for x£0
x= (c)x(1+rel_err)

Usually we do not know ¢

— No need to solve the problem if we already knew it!

Error analysis tries to estimate abs_err and rel_err using
computed result x and knowledge of the algorithm and
data

Errors due to round off in addition

Errors can be magnified during computation.
Example: 2.003 x 10° (suppose = .001 or .05% error)

- 2.000 x 10° (suppose £ .001 or .05% error)
Result of subtraction: 0.003 x 10°

but true answer could be as small as 2.002 - 2.001 =
0.001, or as large as 2.004 - 1.999 = 0.005!

So error in the answer is as much as (£ .002 or 200%
error if true answer is 0.001)

Called: Catastrophic cancellation, or “loss of
significance”



Addition:

* We could generalize this example to prove a theorem:

* When adding or subtracting, the bounds on absolute
errors add.

Multiplication/Division

* What if we multiply or divide?

* Suppose x and y are the true values, and X and Y are our
approximations to them. If

X=x({-r)andY=y(1-5)

then r is the relative error in x and s is the relative error in y.

Can show that xy - XY

<l + Is] + |rs|
Xy

* Ifrand s are small, then we can ignore |rs| term
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Rules of thumb

» Addition/subtraction: Bounds on absolute errors add
» Multiplication/Division: Bounds on relative errors add

* One way to analyze the algorithm is to assume, this error
occurs in each arithmetic operation

* Worst case analysis

 Such error bounds (forward error bounds) are often
pessimistic

Modeling

* Original mathematical models may be poorly specified
or unavailable
— E.g. Newton’s laws work for non relativistic dynamics
— Turbulence

* Computing with a poor model will lead to inevitable
errors

* Quantities that are measured may be done so with error
and bias

— Using them in computation will lead to errors



Errors are inevtiable

Each step is characterized by some error
Measurement errors:
Errors in properties

Inexact mathematical models

el

Discretization errors: something continuous is
represented discretely

5. Errors in the solution to discrete representations of
numbers

Error Analysis

* Design algorithms to minimize errors

 Estimate errors based on knowledge of algorithm
— Error Analysis — forward and backward

* Two primary techniques of error analysis
— Forward Error Analysis
* Floating-point representation of the error is subjected to the same mathematical
operations as the data itself.
— Equation for the error itself
— Backward Error Analysis
+ Attempt to regenerate the original mathematical problem from previously
computed solutions
— Minimizes error generation and propagation
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Error Analysis
* Forward and Backward error analysis

* Forward error analysis
— Assume that the problem we are solving is exactly specified
— Produce an approximate answer using the algorithm considered

True problem

True solution
(unknown)

Computed

Space of problems Space of answers solution

. . (known)
— Goal of forward error analysis produce region guaranteed to

contain true soln.
— Report region and computed solution

Backward error analysis
*  We know that our problem specification itself has error (“error in
initial data”)
» So while we think we are solving one problem we are actually

solving another
Unknown problem

(the one actually solved)

True problem

(known)

True Solution
Region (Unknown)
containing
true Computed
problem solution
and solved  Space of problems Space of answers
problem

* @Given an answer, determine how close the problem actually solved
is to the given problem.

* Report solution and input region
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Testing for Error Propagation

 Use the computed solution in the original problem

» Use Double or Extended Precision rather than Single
Precision

» Rerun the problem with slightly modified (incorrect) data
and look at the results
— Sensitivity analysis
— If problem result changes a lot, perhaps the result is incorrect

Well posed problems

» Hadamard postulated that for a problem to be “well
posed”
1. Solution must exist
2. It must be unique
3. Small changes to input data should cause small changes to

solution

* Many problems in science result in “ill-posed” problems.

— Numerically it is common to have condition 3 violated.

— Problems which violate 3 are also called “ill-conditioned”

» Converting ill-posed problem to well-posed one is called
regularization.

» Will discuss this later in the course when talking about
optimization and Singular Value Decompositon.
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Linear Algebra

Much of scientific computation involves modeling n-
tuples of numbers

Assumed to live in a linear vector space

— Even non-linear problems are solved by linearization
Some interpretations of matrices and vectors
Matrix vector multiplication and complexity
Identity, Inverse, Singular Matrices
Permutation, Lower and Upper Triangular Matrices

Vectors

Ordered set of numbers: (1,2,3,4)
Example: (x,),z) coordinates of a pt in space.
The 16384 pixels in a 128%x128 image of a face

Vectors usually indicated with bold lower case letters. Scalars
with lower case

Usual operations assumed with vectors:
— Addition operation u + v, with:
* Identity 0 v+0=v
* Inverse - V+(-v)=0
— Scalar multiplication:
* Distributive rule: o(u + v) = a(u) + (V)
(a+B)u=ou+pu
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Vector Addition

VAW =(x,%)+(, 1) =X +y,% +y,)

_
-

- /7
Vw7
v/('/

Vector Spaces

A linear combination of vectors results in a new
vector:
V=04V T o,v, +o o,
If the only set of scalars such that
o v, to,v, +...+ta,v, =0
is o0 =0,=...=a;=0
then we say the vectors are /inearly independent

The dimension of a space is the greatest number of linearly
independent vectors possible in a vector set

For a vector space of dimension 7, any set of n linearly
independent vectors form a basis

9/11/2013
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Vector Spaces: Basis Vectors

* Given a basis for a vector space:

— Each vector in the space is a unique linear combination
of the basis vectors

— The coordinates of a vector are the scalars from this
linear combination

— Best-known example: Cartesian coordinates
+ Example

— Note that a given vector v will have different
coordinates for different bases

Dot Product

The dot product or, more generally, inner product of two
vectors is a scalar:
VI Va= XX Ty, T2z, (in 3D)

Useful for many purposes

— Computing the length of a vector: length(v) = sqrt(v » v)

— Normalizing a vector, making it unit-length

— Computing the angle between two vectors:

u e v=|u| |v| cos(0)
Checking two vectors for orthogonality

— Projecting one vector onto another

9/11/2013
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Vector norms

v=0p Xy,

Two norm (Euclidean norm)

n

2

VI, = ‘/Z x;
i=1

If ||v||2 =1, v is a unit vector

Infinity norm

V.. = maxdx|y.|xl, ...,

One norm ("Manhattan distance")

n
. = 22
i=1
For a 2 dimensional vector, write down the set of vectors with two, one and infinity
norm equal to unity

X.
l

Linear Transformations: Matrices

* A linear transformation:
— Maps one vector to another
— Preserves linear combinations

* Thus behavior of linear transformation is
completely determined by what it does to a basis

* Turns out any linear transform can be represented
by a matrix
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