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Linear Algebra 

• Much of scientific computation involves modeling n-

tuples of numbers 

• Assumed to live in a linear vector space 

– Even non-linear problems are solved by linearization 

• Some interpretations of matrices and vectors 

• Matrix vector multiplication and complexity 

• Identity, Inverse, Singular Matrices 

• Permutation, Lower and Upper Triangular Matrices 

 

Vectors 

• Ordered set of numbers: (1,2,3,4) 

• Example: (x,y,z) coordinates of a pt in space. 

• The 16384 pixels in a 128×128  image of a face 

• Vectors usually indicated with bold lower case letters. Scalars 

with lower case  

• Usual operations assumed with vectors: 

– Addition operation u + v, with: 

• Identity 0  v + 0 = v 

• Inverse -  v + (-v) = 0 

– Scalar multiplication: 

• Distributive rule: a(u + v) = a(u) + a(v) 

      (a + b)u = au + bu  
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Vector Addition 
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Vector Spaces 

• A linear combination of vectors results in a new 
vector: 

   v = a1v1 + a2v2 + … + anvn 

• If the only set of scalars such that 

    a1v1 + a2v2 + … + anvn = 0 

    is   a1 = a2 = … = a3 = 0 

    then we say the vectors are linearly independent 

• The dimension of a space is the greatest number of linearly 
independent vectors possible in a vector set 

• For a vector space of dimension n, any set of n linearly 
independent vectors form a basis  
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Vector Spaces: Basis Vectors 

• Given a basis for a vector space: 

– Each vector in the space is a unique linear combination 
of the basis vectors 

– The coordinates of a vector are the scalars from this 
linear combination 

– Best-known example: Cartesian coordinates 
• Example 

– Note that the same vector v will have different 
coordinates in different bases 

Dot Product 

• The dot product or, more generally, inner product of two 
vectors is a scalar: 
   v1 • v2 = x1x2 + y1y2 + z1z2   (in 3D) 

• Useful for many purposes 
– Computing the length of a vector: length(v) = sqrt(v • v) 

– Normalizing a vector, making it unit-length 

– Computing the angle between two vectors: 

u • v = |u| |v| cos(θ) 

– Checking two vectors for orthogonality 

– Projecting one vector onto another 

θ 
u 

v 



9/12/2013 

4 

Vector norms 
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For a 2 dimensional vector, write down the set of  vectors with two, one and infinity  

norm equal to unity 

Orthonormal Basis 

•  Let S = { v1, v2, K, vn } be a basis for an inner product 

space V. Then S is an orthonormal basis for V if  

 a) ( vi , vj  ) = 0 for i ≠ j 

 b) ( vi , vi  ) = 1 for all i 
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Theorem 

Let S = { v1, v2, …, vn } be an orthonormal basis 

for an inner product space V and let v be any 

vector in V.  

 

Then    v = c1 v1 + c2 v2 + … + cn vn       

 

where ci = ( v,vi ) for all i 
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Gram-Schmidt Process 

• Orthogonal bases can  make computations more 

numerically stable, and sparse. 

• If S = { u1, u2, …, un } is a basis (not orthonormal) 

for an inner product space V, is there a way to 

convert it to an orthonormal basis? 
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Gram-Schmidt Process 

Example (continued) 
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Comments 

• Key idea in Gram-Schmidt is to subtract from every new 

vector, uk, its components in the directions already 

determined, { v1, v2, …, vk–1 }  

• Remove any intermediate zero vectors from process 

• When doing Gram-Schmidt by hand, it simplifies the 

calculation to multiply the newly computed vk by an 

appropriate scalar to clear fractions in its components. 

The resulting vectors are normalized at the end of the 

computation 

• On a computer it is better to just normalize at the end … 

otherwise errors due to divisions by small numbers are  
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Modified Gram Schmidt 

• Normalize at the end 

Transformations 

• So far we viewed a matrix as a collection of vectors 

• Saw how to orthognalize this collection 

• Instead we now look at Matrices as linear functions that 

map vector spaces onto other vector spaces 
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Transform view 

• Matrix takes a point in a n dimensional space to a point in 
a m dimensional space 

• n  dimensional space is the domain on which matrix acts 

 

 

 

 

 

 

 

 

–  Output values assumed in the m dimensional space may not 
span entire space but just live in a small region of that space 

– That region is the “range” of the matrix 

* 
Point in 

n dimensional 

 space 

* 
True solution 

(unknown) 

Linear Transformations: Matrices 

• A linear transformation:  

– Maps one vector to another 

– Preserves linear combinations 

• Thus behavior of linear transformation is 
completely determined by what it does to a basis 

• Linear transform from a finite vector space to 
another can be represented by a matrix  

• Choose the Kronecker basis  

• Allows us to express the “abstract” matrix object 
as a concrete object composed of m×n numbers 
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Matrix Transformations 

• A sequence or composition of linear 

transformations corresponds to the product of the 

corresponding matrices 

– Note: the matrices to the right affect vector first 

– Note: order of matrices matters! 

• The identity matrix I has no effect in 

multiplication 

• Some (not all) matrices have an inverse: 

   vvMM 1

Matrices 

• Matrix operations usually defined via action on 
column vectors 

• Suppose we check actions on a set of simple basis 
vectors 

 

 

 

 

 

• This multiplication outputs a column of the matrix 

• All outputs of the matrix-vector product 
(transform) will be a set of scaled sums of 
columns 
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Left and right multiplication 

• Usual multiplication is on the right 

• Can also define multiplication on the left … takes m 

vectors to n vectors 

• Can be characterized by the row space of matrix 

Algorithms to be studied - 1 

• Linear system solution via LU decomposition 

– For a transform from n space to n space, given the image of the 

transform and the matrix computer the original image  

– Stability, etc. 

– Uses to compute matrix inverse, determinant etc. 

– Never use the inverse to solve a linear system 

• Least Squares 

– Given m outputs for a n dimensional linear model, compute the 

best (least-squares) estimate of the parameters of the model  

– Normal equations 

– QR decomposition 

• Givens Rotations and Householder transformations 

– Never use the normal equations! 
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Algorithms to be studied - 2 

• Eigenvalues and Eigenvectors 

– For a given matrix, compute the special directions (“natural 

basis vectors”) which are not transformed 

– QR algorithm 

• Singular Value Decomposition 

– Complete view of the row and column spaces of a matrix 

– Matrix conditioning 

– Regularization 

– Pseudoinverse 

– Principal Components Analysis 

Ways to define matrices 

• Perhaps all entries are random … 

• More often, they are somehow functions of i and j 

 

 

• Matlab code to generate  

matrix 

• If matrix is of size N×N 

how many operations are 

needed to enter values?  

• Sometimes each column or row  

is given as a formula: 

– Example Vandermonde matrix in polynomial interpolation 
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Some special matrices 

• Matlab code 

• How many operations and  

memory does this take? 

• Vectorized operations 

• Matrix may be sparse, i.e. most elements are zero. 

• How many operations/memory? 

• Answer still N2  unless we avoid 

referring to the zero elements 

altogether 

Some special matrices 

• Matrices may be built up from “blocks” of smaller 

matrices 
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Matrix norms 

• Can be defined using  
corresponding vector  
norms 

– Two norm 

– One norm 

– Infinity norm 

• Two norm is hard to 
define … need to find 
maximum singular value 

– related to idea that matrix  
acting on unit sphere converts 
it in to an ellipsoid 

• Frobenius norm is defined 
just using matrix elements 


