Representing linear systems as matrix-vector equations $10x_1 - 7x_2 = 7$

- $-3x_1 + 2x_2 + 6x_3 = 4$ $5x_1 - x_2 + 5x_3 = 6$
- Represent it as a matrix-vector equation (linear system)
- We will apply the familiar elimination technique, and then see its matrix equivalent

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$

Easy systems to solve

- Identity
- Diagonal
- Triangular

$$U = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 5 & 1 & 0 \\ 4 & 6 & 7 & 1 \end{pmatrix}$$

Solving a triangular system

Cost of solving a triangular system Loop of size n. Each loop has a cost of k (or n-k) So total cost is $n*1 + n*2 + ... n*n = n^2$

Gaussian Elimination

 $\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$ • Zero elements of first column below 1st row – multiplying 1st row $\begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.1 & 6 \\ 0 & 2.5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 6.1 \\ 2.5 \end{pmatrix}$ by 0.3 and add to 2^{nd} row – multiplying 1st row by -0.5 and add to 3rd row – Results in $\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.1 \end{pmatrix}$ • Zero elements of first column below 2nd row $\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2.5 \\ 6.2 \end{pmatrix}$ – Swap rows – Multiply 2nd row by 0.04 and add to 3rd

Solution

- Start from last equation which can be solved by division
- Next substitute in the previous line and continue

$$6.2x_3 = 6.2$$

 $2.5x_2 + (5)(1) = 2.5.$

$$10x_1 + (-7)(-1) = 7$$

$$x = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

- This describes the way to do the algorithm by hand
- How to represent it using matrices?
- Suppose we wished to solve another system that has the same matrix?

$$10x_1 - 7x_2 = 7$$

-3x_1 + 2x_2 + 6x_3 = 3.901
5x_1 - x_2 + 5x_3 = 6

- Upper triangular matrix we end up with will be the same, but the sequence of operations on the r.h.s needs to be repeated
- Can we do that efficiently?

Gaussian Elimination: LU Matrix decomposition

- Gaussian elimination corresponds to a LU decomposition
 - Product of permutation, lower triangular and upper triangular matrices
- Permutation Matrix
 - Multiplying swaps order of P rows in a matrix/vector
 - Rearrangement of the identity
 - Nice property: transpose is its inverse: $PP^T = I$

$$Px = b$$

$$x = P^T b$$

$$= \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

LU Decomposition

- LU=PA
- upper triangular matrix is the final matrix we end up with
 - Elements below diagonal are zero
- Lower triangular matrix
 - Elements above diagonal are zero
 - Ones along diagonal
 - Has the multipliers used in the elimination
 - Multiplication leaves output first row same
 - Second row output is a combination of first row with multiplier plus second row

LU=PA

- $L = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & -0.04 & 1 \end{pmatrix} \qquad U = \begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{pmatrix}$
- *L* has the multipliers we used in $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ the elimination steps
- *P* has a record of the row swaps we did to avoid dividing by small numbers

$$L_1 L_2 \cdots L_{n-1} U = P_{n-1} \cdots P_2 P_1 A$$

Solving a system with the LU decomposition

Ax=b LU=PA $P^{T}LUx=b$ L[Ux]=PbSolve Ly=Pb Then Ux=y

LU Remarks

- Operations count: $n^3/3$ multiplications.
- Matlab's backslash operator solves linear systems, using LU, without forming the inverse:

 $x = A \setminus b;$

• If you have k right-hand sides involving the same matrix, store them as columns in a matrix B of size $n \times k$ and then solve using, for example

 $X = A \setminus B;$

What about sparsity?

If A has lots of zeros, we would like our algorithms to take advantage of this, and not to ruin the structure by introducing many nonzeros.

If A is initialized as a sparse matrix in Matlab, then backslash and the lu algorithm both try to preserve sparsity.

Other computations

- Cholesky decomposition
 - Real symmetric positive definite matrices
 - No need for pivoting
 - $A = LDU = LDL^t = LL^t$
- Determinant
 - Usual formula (minors/cofactors) has factorial cost
 - Instead observe that
 - Determinant of individual matrices in a product multiply
 - Determinant of triangular matrix is obtained by multiplying diagonal
- Inverse
 - Get LU decomposition
 - Solve with N right hand sides (columns of identity matrix)
 - Arrange solutions in columns to get inverse matrix

Is pivoting necessary in LU?

- Consider $\begin{bmatrix} \delta & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ • Exact solution is $x = \begin{bmatrix} -\frac{1}{1-\delta} \\ \frac{1}{1-\delta} \end{bmatrix}$
- Let $\delta < 0.5^* \epsilon$
- Solution without pivoting gives

$$\begin{bmatrix} \delta & 1 \\ 0 & -1/\delta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/\delta \end{bmatrix}$$

$$x_2 = 1, \ x_1 = 0$$

Is pivoting necessary?

- With pivoting $\begin{bmatrix} 1 & 1 \\ \delta & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ • Elimination gives $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ • With answers $x_2 = 1$, $x_1 = -1$.
- Close to exact

How accurate are answers from LU?

- We solve the equation Ax=b
- Let true solution be x*
- Let obtained solution be x
- Then error is $e = x^* x$
 - Error is not computable ("Forward" error)
- New concept "residual" ("Backward error")
 - Residual is the difference between the original right hand side and the right hand side obtained with the obtained solution

r=b-Ax

- Guarantee: LU produces answers with small residuals
 on computers with IEEE floating point
- Do small residuals mean small errors?

Return to our example

- Compute residual $r \equiv b Ax$ $= \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \delta & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} 0 \\ \delta \end{bmatrix}.$
- We have exactly solved a nearby problem

Ax = b - r

Another example

assume 3-digit decimal arithmetic.

$$\begin{bmatrix} .780 & .563 \\ .913 & .659 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} .217 \\ .254 \end{bmatrix}$$

If we compute the solution with pivoting, we obtain

$$x = \begin{bmatrix} -.443\\ 1.000 \end{bmatrix}, r = \begin{bmatrix} -.000460\\ -.000541 \end{bmatrix}$$
$$x_{true} = \begin{bmatrix} 1.000\\ -1.000 \end{bmatrix}$$

Solution has small residual but very large errorIn fact signs of the solution are opposite!

Condition numbers

The first problem is **well-conditioned**; small changes in the data produce small changes in the answer.

The second problem is **ill-conditioned**; small changes in the data can produce large changes in the answer.

• Recall definition of condition number

Condition Number of a Matrix

A measure of how close a matrix is to singular

$$\operatorname{cond}(A) = \kappa(A) = \|A\| \cdot \|A^{-1}\|$$
$$= \frac{\operatorname{maximum stretch}}{\operatorname{maximum shrink}} = \frac{\max_{i} |\lambda_{i}|}{\min_{i} |\lambda_{i}|}$$

•
$$\operatorname{cond}(I) = 1$$

• cond(singular matrix) = ∞

Properties of the condition number

Some properties:

$$-\kappa(A) \ge 1$$
 for all matrices.

- $-\kappa(A) = \infty$ for singular matrices.
- $-\kappa(cA) = \kappa(A)$ for any nonzero scalar c.
- $-\kappa(D) = \max |d_{ii}| / \min |d_{ii}|$ if D is diagonal.
- $-\kappa$ measures closeness to singularity better than the determinant.

Relation between condition number and error

$$\begin{aligned} Ax_{true} &= b \quad \rightarrow \quad \|b\| = \|Ax_{true}\| \leq \|A\| \|x_{true}\| \\ \|x_{true}\| \geq \frac{\|b\|}{\|A\|} \quad \rightarrow \quad \frac{1}{\|\mathbf{x}_{true}\|} \leq \frac{\|\mathbf{A}\|}{\|\mathbf{b}\|} \\ Ax &= b - r \quad \rightarrow \quad A(x_{true} - x) = r \\ (x_{true} - x) &= A^{-1}r \quad \rightarrow \quad \|\mathbf{x}_{true} - \mathbf{x}\| \leq \|\mathbf{A}^{-1}\| \|\mathbf{r}\| \\ \frac{\|\mathbf{x}_{true} - \mathbf{x}\|}{\|\mathbf{x}_{true}\|} &\leq \quad \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \\ &= \quad \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \kappa(A) \,. \end{aligned}$$

• In words: relative error is smaller than norm of residual divided by norm of rhs times condition number

11

• So larger condition number means larger error

Closing remarks

- Never compute matrix inverse
- Use a stable algorithm
- Check residual and condition number of problem
- If condition number is large, do not trust solution
 Can problem be reformulated somehow?

LU code

```
%LU Triangular factorization
                        %
                            [L,U,p] = lutx(A) produces a unit lower triangular
                        %
                           matrix L, an upper triangular matrix U, and a
                        %
                           permutation vector p, so that L*U = A(p,:).
  Initialize
   – Matrix size
                        [n,n] = size(A);
   - Permutation vector p = (1:n),
• Second output
                        for k = 1:n-1
  argument to max is
  index of max
                           % Find largest element below diagonal in k-th column
  element
                           [r,m] = max(abs(A(k:n,k)));
                           m = m+k-1;
• If max element is
  zero then we need
                           % Skip elimination if column is zero
  not eliminate
                           if (A(m,k) ~= 0)
• Exchange rows
                              % Swap pivot row
 update permutation
                              if (m = k)
  vector
                                 A([k m],:) = A([m k],:);
                                 p([k m]) = p([m k]);
                              end
```

Look at LU code

- Multipliers for each row below diagonal
 - Note multipliers are stored in the lower triangular part of A
- Vectorized update
 - A(i,k)*A(k,j) multiplies column vector by row vector to produce a square, rank 1 matrix of order n-k.
 - matrix is then subtracted from the submatrix of the same size in the bottom right corner of A.
 - In a programming language without vector and matrix operations, this update of a portion of A would be done with doubly nested loops on i and j.
 - Cost is n^2 and done n times for a total cost of n^3
- Computes decomposition in the matrix A itself
- Here they are separated, but when memory is important it can be left there

% Compute multipliers
i = k+1:n;
A(i,k) = A(i,k)/A(k,k);

% Update the remainder of the matr j = k+1:n; A(i,j) = A(i,j) - A(i,k)*A(k,j);

end

end

```
% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);
```

Code to solve linear system using LU

- In Matlab the backslash operator can be used to solve linear systems.
- For square matrices it employs LU or special variants
 - Lower triangular
 - Upper triangular
 - symmetric
- Symmetric LU is called Cholesky decomposition
 - $A = LL^T$
 - Upper and lower triangular are equal (transposes)
 - If matrix not positivedefinite go to regular solution

```
function x = bslashtx(A,b)
% BSLASHTX Solve linear system (backslash)
% x = bslashtx(A,b) solves A*x = b
[n,n] = size(A);
if isequal(triu(A,1),zeros(n,n))
   % Lower triangular
   x = forward(A,b);
   return
elseif isequal(tril(A,-1),zeros(n,n))
   % Upper triangular
   x = backsubs(A,b);
   return
elseif isequal(A,A')
   [R,fail] = chol(A);
   if ~fail
      % Positive definite
      y = forward(R', b);
      x = backsubs(R,y);
      return
   end
```

Code continues % Triangular factorization [L,U,p] = lutx(A);• Call LU % Permutation and forward elimination – Solve y=Lb y = forward(L,b(p));- Solve x=Uy x = backsubs(U,y);function x = forward(L,x)% FORWARD. Forward elimination. % For lower triangular L, x = forward(L,b) solves L*x = b. [n,n] = size(L);for k = 1:nj = 1:k-1;x(k) = (x(k) - L(k, j) * x(j))/L(k, k);end function x = backsubs(U, x)% BACKSUBS. Back substitution. % For upper triangular U, x = backsubs(U,b) solves U*x = b. [n,n] = size(U);for k = n:-1:1j = k+1:n;x(k) = (x(k) - U(k, j) * x(j)) / U(k, k);

end