Representing linear systems as matrix-vector

equations
1021 — 7Txo
—3x1 + 2x5 + 623
S5r1 — xo + 5x3

-
4

6

e Represent it as a matrix-vector equation (linear system)

« We will apply the familiar elimination technique, and
then see its matrix equivalent

/10
—3
5

~7 0\

2
—1

6
5)

(1)

o)

(7
4
\ 6/

 |dentity
e Diagonal
e Triangular

Easy systems to solve
/1

O
0

\ O

U=

o o 00N

S 00O W

o O~ O

4\

10)

~N = O O

Solving a triangular system

x = zeros(n,1);
for k = n:-1:1

x(k) = b(k)/U(k,k);

i= (1:k-1)’;

b(i) = b(i) - x(k)*U(i,k);
end

Cost of solving a triangular system

Loop of size n. Each loop has a cost of k (or n-k)
So total cost is

n*1+n*2+...n*n=n?

Gaussian Elimination

o Zero elements of 10 -7 O
first column below -3 2 6
15t row 5 _1 5

— multiplying 1%t row

by 0.3 and add to 2" row 10 =7 O L1
— multiplying 15t row 0 -01 6]]| 2
5

by -0.5 and add to 3" 0 2.5
row
— Results In 10 _7 0
* Zero elements of 0 25 5§
flrdst column below 0 -01 6
2"% row
— Swap rows 10 —7 O
— Multiply 2" row by O 25 5
0.04 and add to 3" 0 0O 6.2

Solution

e Start from last equation which
can be solved by division

* Next substitute in the previous
line and continue

6.205 = 6.2
2.525 4+ (5)(1) = 2.5.

1027 4+ (=7)(—1) =7

(3

* This describes the way to do the algorithm by hand
* How to represent it using matrices?

e Suppose we wished to solve another system that has the
same matrix?

101 — x> = I
—3x1 + 2x5 + 603 = 3.901
51 — 1o+ bxrz = 6

— Upper triangular matrix we end up with will be the same, but
the sequence of operations on the r.h.s needs to be repeated

— Can we do that efficiently?

Gaussian Elimination: LU Matrix decomposition

« (Gaussian elimination corresponds to a LU decomposition
— Product of permutation, lower triangular and upper triangular

matrices
e Permutation Matrix /O 0 0 1 \
— Multiplying swaps order of P = 10 00
rows in a matrix/vector 0 0 1 O
— Rearrangement of the \O 1 0 0/

identity
— Nice property: transpose £ =0
IS its inverse: PPT=]
x = Py

LU Decomposition

« LU=PA
 upper triangular matrix is the final matrix we end up with
— Elements below diagonal are zero

« Lower triangular matrix
— Elements above diagonal are zero
— Ones along diagonal
— Has the multipliers used in the elimination
— Multiplication leaves output first row same

— Second row output is a combination of first row with multiplier
plus second row

L U=PA
, 5 5 | 10 -7 0
P X q U=|0 25 5
o | O 0 6.
~0.3 —-0.04 1

2
1 0 O
e L hasthe multiplierswe usedin P = (O 0 1)

the elimination steps 0 1 O

* P has arecord of the row swaps we did to
avold dividing by small numbers

Lilo--- Ly 1 U=P,_1---PoP1A

Solving a system with the LU decomposition

Ax=Db
_U=PA

PT LUx=Db
_[Ux]=PDb
Solve Ly=Pb
Then Ux=y

LU Remarks

e Operations count: n”/3 multiplications.

e Matlab’s backslash operator solves linear systems, using LU, without
forming the inverse:

x = A\ b;
e If you have k right-hand sides involving the same matrix, store them as
columns in a matrix B of size n x k and then solve using, for example

X = A\ B;
What about sparsity?

If A has lots of zeros, we would like our algorithms to take advantage of
this, and not to ruin the structure by introducing many nonzeros.

If A is initialized as a sparse matrix in Matlab, then backslash and the 1u
algorithm both try to preserve sparsity.

Other computations

e Cholesky decomposition
— Real symmetric positive definite matrices
— No need for pivoting
— A=LDU = LDL*=LL!
e Determinant
— Usual formula (minors/cofactors) has factorial cost

— Instead observe that
« Determinant of individual matrices in a product multiply
« Determinant of triangular matrix is obtained by multiplying diagonal

e Inverse
— Get LU decomposition
— Solve with N right hand sides (columns of identity matrix)
— Arrange solutions in columns to get inverse matrix

Is pivoting necessary in LU?
Consider s 11T 1 . "1
I 1 1 |1 L9] o I 0]
Exact solution is I 1 -
e 1T5
: 1—0
Letd <0.5*%¢
Solution without pivoting gives
i (5].] i 35‘1] L i]_
I 0 —1/(5 1L Lo] - —1/(5]

2172:1, 117120

With pivoting

Elimination gives

With answers

Close to exact

IS pivoting necessary?

1 1 || 2
_(5 1__35‘2_
-1 1- .56‘1-_
O]. .513'2_—
5132:1,5131:—1.

How accurate are answers from LU?

We solve the equation AXx=Db
et true solution be x*
|_et obtained solution be X
Then error 1S e= X*-X
— Error is not computable (“Forward” error)

New concept “residual” (“Backward error”)

— Residual is the difference between the original right hand side
and the right hand side obtained with the obtained solution

r=b-Ax
Guarantee: LU produces answers with small residuals
— on computers with IEEE floating point

Do small residuals mean small errors?

Return to our example

. Compute residual " = b— Az
o] T
1)
—_— - O -
- 0

* We have exactly solved Ar — by

a nearby problem

Another example

assume 3-digit decimal arithmetic.

780 .563 ry | | 217
913 .659 ro | | .254
If we compute the solution with pivoting, we obtain

[—.443 [—.000460
Y= 1000 |0 " T | —.000541

i B 1.000
Ltrue — —1000

Solution has small residual but very large error
*|n fact signs of the solution are opposite!

Condition numbers

The first problem is well-conditioned; small changes in the data produce
small changes in the answer.

The second problem is ill-conditioned; small changes in the data can
produce large changes in the answer.

e Recall definition of condition number

Condition Number of a Matrix

A measure of how close a matrix is to singular

cond(A) = x(A) =||Al-|A™

_ maximum stretch max| |

maximum shrink ~ min|4]
|

e cond(l) =1
 cond(singular matrix) = o

Properties of the condition number

Some properties:

— Kk(A) > 1 for all matrices.

— k(A) = oo for singular matrices.
— k(cA) = k(A) for any nonzero scalar c.
— k(D) = max |d;|/ min |d;| if D is diagonal.

— Kk measures closeness to singularity better than the determinant.

Relation between condition number and error

44:1;151'1.5.(;‘ =b — HbH — Hzilmt-r*ufﬁ” < ||*4H “:rt-r*?J..e“
Nl > 2L 1Al
Ltruel|l = , o~
Al [Xtruell = b}

Ar=b—r — A(Ttrye —x) =7
(Ttrue —) = A7 = | Xtrue — X|| < HA_IH [r|

thrue — XH < ”I'H

< S |AATH]
| Xtruell b||
T”
— Ay
z;H”()

e |n words: relative error 1s smaller than norm of residual
divided by norm of rhs times condition number

 So larger condition number means larger error

Closing remarks

Never compute matrix inverse
Use a stable algorithm
Check residual and condition number of problem

If condition number is large, do not trust solution
— Can problem be reformulated somehow?

LU code

Initialize
— Matrix size

%LU Triangular factorization

o
T
[

[L,U,p] = lutx(A) produces a unit lower triangular
matrix L, an upper triangular matrix U, and a
permutation vector p, so that L*U = A(p,:).

[n,n] = size(A);

— Permutation vector P = (1:n)’

Second output
argument to max is
Index of max
element

If max element Is
zero then we need
not eliminate

Exchange rows

update permutation
vector

for k = 1:n-1

% Find largest element below diagonal in k-th column
[r,m] = max(abs(A(k:n,k)));
m = m+k-1;

% Skip elimination if column is zero
if (A(m,k) "= 0)

% Swap pivot row

if (m "= k)
A([k m],:) = A([m k],:);
p(lk m]) = p([m k]);

end

L ook at LU code

 Multipliers for each row below /% Compute multipliers
diagonal i = k+1:n;
— Note multipliers are stored in the lower A(i,k) = A(i,kK)/A(k,k);

triangular part of A
» Vectorized update

— A(i,K)*A(K,j) multiplies column /» Update the remainder of the matr

vector by row vector to produce a J = k+l:n;
square, rank 1 matrix of order n-k. A(i,j) = A(4,]) - A(i,k)*A(k,]);
— matrix is then subtracted from the end

submatrix of the same size in the end
bottom right corner of A.

— Ina programming language ;
withgut%ector ar?d ma?trixg h Separate result
operations, this update of a portion L = tril(A,-1) + eye(n,n);
of A would be done with doubly U = triu(A);
nested loops on i and j.

— Cost is n2 and done n times for a
total cost of n3

o Computes decomposition in the matrix
A itself

» Here they are separated, but when
memory is important it can be left there

In Matlab the backslash
operator can be used to
solve linear systems.

For square matrices it
employs LU or special
variants

— Lower triangular

— Upper triangular

— symmetric
Symmetric LU is called
Cholesky
decomposition

— A=LLT

— Upper and lower

triangular are equal
(transposes)

— If matrix not positive-
definite go to regular
solution

Code to solve linear system using LU

function x = bslashtx(A,b)
% BSLASHTX Solve linear system (backslash)
% x = bslashtx(A,b) solves Axx = b

[n,n] = size(A);
if isequal(triu(A,1),zeros(n,n))
% Lower triangular
x = forward(A,b);
return
elseif isequal (tril(A,-1),zeros(n,n))
% Upper triangular
x = backsubs(4,b);

return

elseif isequal(A,A’)
[R,fail] = chol(A);
if "fail

% Positive definite

y = forward(R’,b);
x = backsubs(R,y);
return

end

and

COde Contlnues % Triangular factorization

[L,U,p] = lutx(A);
e Call LU
— Solve y:Lb 7% Permutation and forward elimination
y = forward(L,b(p));
— Solve X:Uy x = backsubs(U,y);

function x = forward(L,x)
% FORWARD. Forward elimination.
% For lower triangular L, x = forward(L,b) solves L*x = Db.
[n,n] = size(L);
for k = 1:n
j = 1:k-1;
x(k) = (x(k) - Lk,j)*x(j))/Lk,k);
end
function x = backsubs(U,x)
% BACKSUBS. Back substitution.
% For upper triangular U, x = backsubs(U,b) solves Uxx = b.
[n,n] = size(U);
for k = n:-1:1
j = k+1l:n;
x(k) = (x(k) - Uk, j)*x(j))/Uk,k);
end

	Representing linear systems as matrix-vector equations
	Easy systems to solve
	Solving a triangular system
	Gaussian Elimination
	Solution
	Slide Number 6
	Gaussian Elimination: LU Matrix decomposition
	LU Decomposition
	LU=PA
	Solving a system with the LU decomposition
	LU Remarks
	Other computations
	Is pivoting necessary in LU?
	Is pivoting necessary?
	How accurate are answers from LU?
	Return to our example
	Another example
	Condition numbers
	Condition Number of a Matrix
	Properties of the condition number
	Relation between condition number and error
	Closing remarks
	LU code
	Look at LU code
	Code to solve linear system using LU
	Code continues

