
Another example 

•Solution has small residual but very large error 

•In fact signs of the solution are opposite! 



Condition Number of a Matrix 

A measure of how close a matrix is to singular 

 

 

 

 

 

• cond(I) = 1 

• cond(singular matrix) =  
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Properties of the condition number 



Relation between condition number and error 

• In words: relative error is smaller than norm of residual 
divided by norm of rhs times condition number 

• So larger condition number means larger error 



Closing remarks 

• Never compute matrix inverse 

• Use a stable algorithm 

• Check residual and condition number of problem 

• If condition number is large, do not trust solution 

– Can problem be reformulated somehow? 



LU code 

• Initialize  
– Matrix size 

– Permutation vector 

• Second output 
argument to max is 
index of max 
element 

• If max element is 
zero then we need 
not eliminate 

• Exchange rows 

• update permutation 
vector 

 

 



Look at LU code 
• Multipliers for each row below 

diagonal 
– Note multipliers are stored in the lower 

triangular part of A 

• Vectorized update 

– A(i,k)*A(k,j) multiplies column 
vector by row vector to produce a 
square, rank 1 matrix of order n-k.  

– matrix is then subtracted from the 
submatrix of the same size in the 
bottom right corner of A.  

– In a programming language 
without vector and matrix 
operations, this update of a portion 
of A would be done with doubly 
nested loops on i and j. 

– Cost is n2 and done n times for a 
total cost of n3 

• Computes decomposition in the matrix 
A itself 

• Here they are separated, but when 
memory is important it can be left there 



Code to solve linear system using LU 

• In Matlab the backslash 
operator can be used to 
solve linear systems.  

• For square matrices it 
employs LU or special 
variants 
– Lower triangular 

– Upper triangular 

– symmetric 

• Symmetric LU is called 
Cholesky 
decomposition 
– A=LLT 

– Upper and lower 
triangular are equal 
(transposes) 

– If matrix not positive-
definite go to regular 
solution 



Code continues 

• Call LU  

– Solve  y=Lb 

– Solve  x=Uy 

 



Fitting data to a model 
• Practical science involves lots of fitting of data to models 

• Tasks arise commonly in science 

– Fit straight lines and curves to data 

– More generally fit a parametric model to data 

• Parametric: Model contains parameters 

– Job of fitting is to estimate the parameters that “best” make the 

model fit the data 

– “best”  define best 

– For this section, best is least square error 

• Simplest example of model fitting problem 

– Linear regression 



X 

Y 

Want to estimate Regression Line that 

minimizes sum of squares of residuals 

intercept  :a

1 

slope:b
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How do we find a and b? 

•Differentiate cost function with respect to b and a and 

get two equations in two unknowns 

E(a,b)= 𝑟𝑖
2 =𝑁

𝑖=1  𝑦𝑖 − 𝑏𝑥𝑖 + 𝑎
2𝑁

𝑖=1  

Find a and b by minimizing sum of squares of 

individual point residuals, with respect to a and b 

𝜕𝐸

𝜕𝑎
= − 2 𝑦𝑖 − 𝑎 + 𝑏𝑥𝑖

𝑛
𝑖=1

𝜕 𝑎+𝑏𝑥𝑖

𝜕𝑎
 = 0 

 

𝜕𝐸

𝜕𝑏
= − 2 𝑦𝑖 − 𝑎 + 𝑏𝑥𝑖

𝑛

𝑖=1

𝜕 𝑎 + 𝑏𝑥𝑖
𝜕𝑏

= 0 



Least Squares for more unknowns 
• Suppose we wish to solve 

Ac=y 

A is a m×n matrix, c is a n vector, and y is a m vector 

• Look for solution c that minimizes same cost function, the 

sum of squares of residuals  ri at each data point xi  

F(c)=||Ac - y||2
2  

 

 

 

 

Differentiate with respect to the unknowns cl and set to zero 
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• Derivative is 1 for j=l (or k=l), otherwise zero. Define 

 

 

 

– Also called Kronecker Delta 

– This yields the following equation for each l 

 

  

 

 

 

• Can recognize these as the following equation 
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Normal equations 

• For A size m × n and c of size n and y of size m what are 

the dimensions of the normal equations? 

– n × n 

• Have converted it to a regular system that we know how 

to solve 

• Solve via LU decomposition 

• Solution accurate if the matrix AtA is well conditioned 

• Cost of solving normal equations 

– Matrix product n2m  operations.  

– Matrix vector product nm operations 

– LU decomposition n3/3 operations 
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More on Normal Equations 

• Normal equations are only important theoretically 

• In practice least squares solved via a different process 

– QR decomposition 

• Why? 

– Somewhat expensive as we have to form At A  

– involves matrix multiplication and then solution 

– More importantly it is poorly conditioned 

– cond(AtA) = (cond(A))2 

• Would like a method whose errors are closer to the 

condition number of A 



Look at the fitting matrix in more detail 

• Instead 

– Look for methods that can directly operate on A to get the 

solution 

– Recall in LU we did a set of transformations to A and the r.h.s. 

to find c 

– Today we will look at the QR algorithm 

• Goal in least squares is to find the coordinates of the 

vector in the column space of matrix that best 

approximates the right hand side in a least squares sense 

• Matrix vector product 

– Produces a vector that is a combination of column vectors of 

matrix 



Key Ideas 

• Column space of a matrix: the vector space formed by the 

collection of column vectors in a matrix 

• Every matrix vector product results in 

a vector formed by linear combination  

of vectors in the column space 

• A  m×n rectangular matrix A  
takes n vectors into  m vectors 

• Let the least squares problem be Ac=f 

• Let the solution which minimizes the residual be c* 

• Then c* creates on matrix vector product a rhs f* that is in 
the column space of A 

• We want that c* minimizes r=||f  ̶  f*|| 

 



Null Space of A 
• Not all m vectors will be reachable even if we supply 

arbitrary n vectors  

• Range of A: the part of the space of m vectors that are 
reachable 

 Range(A) = {y  Rm : y=Ax for some x  Rn} 

– The range of A contains all those vectors that can be 
made up using the columns of A 

– Rank(A) is the dimension of the range of A 

– Null space of A: those vectors x, for which Ax is zero 

Null(A) = {x  Rn : Ax=0} 

Dim(Null(A))+Rank(A)=n 

• Key idea: Minimize the error in the part that can be 
reached 

 



QR decomposition 

• Suppose we can write  

A=Q’R’ 

– Q’ is an orthonormal matrix of dimension m × m 

– R’ is a m × n matrix that can be written as [R] 

                                                                    [0 ] 

R is a triangular  n × n matrix and 0 is a matrix of zeroes of size 
m-n × n 

Q’ can also be partitioned as [Q Q~] with Q containing n 
orthonormal columns of size m and Q~ m-n orthonormal 
columns 

• If Ax=b  then (Q’ R’)x=b  or Q’(R’x)=b  or Q’y=b 

– So if b is in range(A), it is also in range(Q’) 

– Similarly if Q’y=b; then b=Ax with x=R-1y  

– Columns of Q form an orthonormal basis for range(A) 

 



Orthogonal Matrices 

• Orthogonal matrices are square matrices that have their 

columns orthonormal to each other 

– dot product of different column vectors is zero, while of the 

same column is one 

– Denoted Q 

– Most trivial orthogonal matrix is the identity matrix 

– QtQ=Λ    

– For an orthonormal matrix 

– QtQ=I    

– So Q-1=QT 

generalization: a complex matrix is Hermitian iff Q-1=QH 

where superscript H denotes complex conjugate transpose 

 

 



Orthogonal matrix facts 

• Suppose Q is an orthonormal matrix 

• Then for any vector r the Euclidean norm is preserved in 

an orthonormal transformation 

• Proof 

||Qr||2=(Qr)t (Qr)= rt Qt Q r = rt (Qt Q) r =rt r =||r||2  

• If Q is an orthonormal matrix  

so is the extended matrix Qe 

• Easy to show from definition that  

 Qe
t Qe = I 

 



Solving least squares with QR 

• A=Q’R’ 

• Let         r= y-Ac  b=Q’t y 

• Goal of least squares find the c that minimizes squared 

error (residue) 

• Partition b in to two pieces 

– b1 of dimension n 

– b2 of dimension m-n 

– ||r||2 = || y- Ac||2  = ||y –Q’ R’ c||2 

– Length is not changed by multiplication with orthogonal matrix 

– So ||r||2 =||Q’tr||2 =||Q’t [y –Q’ R’ c]||2 

          =||b1 – R c ||2 + ||b2 – 0c||2 

So no matter what c is the second term remains unchanged 

If we minimize ||r||2 the best we can do is minimize first term  



Solving LS via QR 

• How do we minimize ||c1 – R x ||2  

– If R is full rank set solve Rx=c then we have done the best we 

can 

–  (if R is rank deficient solve in least squares sense) 

– Recall R is triangular so this equation can be easily solved 

• Algorithm 

– Compute QR factorization of A=Q’R’ 

– Form c1=Qt b 

– Solve Rx=c1 

– If R is full rank and Q~ is available then the norm of the 

residual is ||Q~t b||. Else r = b – A x. 

 



Computing the QR factorization 

• In LU: Converted matrix A to triangular matrix U by adding 
multiples of other rows 

– Elements below a given column were zeroed out 

– The multipliers were stored in L which gave us A=LU 

• Here want to zero out entries below the diagonal and convert to 
triangular matrix R but do it with orthogonal matrices 

• Two strategies 

• Zero out a column at a time using a matrix Q1 so that Qt
1 A gives us 

all entries below a certain one in a column as zero 

– Householder transformations 

– Result Qt
n…Qt

2Q
t
1 A =R  or A = Q1…Qn-1Qn R =Q R 

• Zero out one specific entry of a column at a time 

– Givens rotations 

• Product of orthogonal matrices is orthogonal 



To compute QR 

• Perform a sequence of orthogonal transformations that 

zero out elements 

• Orthogonal transformations can be rotations or 

reflections or combinations 

• Givens Rotation: 

• Givens matrix has elements  

• c2+s2=1 

• How do we use a rotation to zero out an element? 

• Let z= [z1 z2]
t   

• We want  

• Eliminate z2 

• Similarly we get s=z2/x,   and  z1
2+z2

2 = x2 



Givens QR 
• To apply idea to larger matrix, embed the Givens matrix in  identity 

 

 

 

 

 

 

 

 

• Algorithm  for i=1, …,n 
        for j=i+1, …, m 

     Find Givens matrix Gijto zero out j,i element of A 
    using the the value at position (i,i) 

     A=GijA 

          end 

    end 
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Householder Geometry 

• Hx is x reflected through the hyperplane 

perpendicular to v (p : pTv=0) 



Householder Transformations 

The Householder transformation determined by vector  v is: 

 

 

To apply it to a vector x, compute: 
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Householder Properties 

• H is symmetric, since 

 

 

• H is orthogonal, since 
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Householder to Zero Matrix Elements 

We’ll use Householder transformations to zero 

subdiagonal elements of a matrix. 

Given any vector a, find the v that determines an H such 

that, 

 

Now solve for v: 
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Choosing the Vector v 
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Applying Householder Transforms 

• Don’t compute Hx explicitly, that costs 3n2 flops. 

• Instead use the formula given previously, 

 

 

    which costs 4n flops (if you pre-compute vTv or pre-

normalize vTv=2). 

• Typically, when using Householder transformations, you 

never compute the matrix H; it’s only used in derivation 

and analysis. 
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Rank Revealing QR: AP=QR 

• Crucial addition similar to pivoting 

for k=1:N 

– Compute the norm of columns A(k:M, k:N ) 

– If max norm of all columns is below threshhold stop 

– Swap column k of the matrix with the column with maximum 

norm 

– Compute Householder transform using that column 

– Apply to other columns 

end 

• Store column swaps in a permutation 



QR Decomposition 

• Householder transformations are a good way to zero out 

subdiagonal elements of a matrix. 

• A is decomposed: 

 

 

• where QT=Hn…H2H1 is the orthogonal  product of 

Householders and R is upper triangular. 

• Overdetermined system Ax=b is transformed into the 

easy-to-solve 
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Other Norms 

• Here we fit using the “least-squares” or L2 norm 

• Could minimize the residual in other norms 

• For example we may have more confidence in some data, 

and want to be sure that their residual is lower 

– Attach a weight to each residual 

 

• Or we may like the 1-norm or infinity norm better 

 



SVD and Pseudo-Inverse 

 



Q~ forms Nullspace of (At) 

• Choose z in nullspace of At 

•  Let At z =0  

– (Q’R’)t z= R’t Q’t z=0 

– So Rt y = 0 for   y=Qt z 

– If R is full rank this means y has to be the zero vector 

– So Qt z =0 

– So z must be composed of the elements from Q~ 

– So the columns of Q~ form an orthonormal basis for  nullspace(At) 


