Normal equations $2(\mathbf{A}^{t}\mathbf{A}\mathbf{c} - \mathbf{A}^{t}\mathbf{y}) = 0$ or $\mathbf{A}^{t}\mathbf{A}\mathbf{c} = \mathbf{A}^{t}\mathbf{y}$

- The system is called the "Normal equations"
- Can solve least squares problems using these
- For A size $m \times n$ and c of size n and y of size m what are the dimensions of the normal equations?

 $-n \times n$

- Have converted it to a regular system that we know how to solve
- Solve via LU decomposition
- Solution should be accurate if the matrix A^tA is well conditioned

More on Normal Equations

- Normal equations are only important theoretically
- Gives us a way to think about least squares.
- In practice least squares solved via a different process
 - QR decomposition
- Why?
 - Somewhat expensive as we have to form $A^t A$
 - involves matrix multiplication and then solution
 - More importantly it is poorly conditioned
 - $\operatorname{cond}(A^{t}A) = (\operatorname{cond}(A))^{2}$
- Would like a method whose errors are closer to the condition number of A

Look at the fitting matrix in more detail

• Suppose we want to solve via least squares

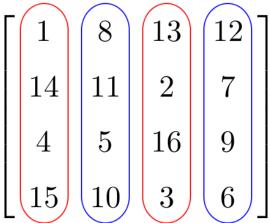
Ac=y

 $-\mathbf{A}$ is a $m \times n$ matrix with m > n

- One way to solve was via LU decomposition of normal equations
 - Poor condition numbers and so not recommended
 - Requires matrix-matrix multiplication which is expensive
- Instead
 - Look for methods that can directly operate on A to get the solution
 - Recall in LU we did a set of transformations to A and the r.h.s. to find c
 - Today we will look at the QR algorithm

Key Ideas

- Column space of a matrix: the vector space formed by the collection of column vectors in a matrix
- Every matrix vector product results in a vector formed by linear combination of vectors in the column space
- A *m*×*n* rectangular matrix **A** takes *n* vectors into *m* vectors



- Let the least squares problem be Ac=f
- Let the solution which minimizes the residual be \mathbf{c}_*
- Then c_* creates on matrix vector product a rhs f_* that is in the column space of A
- We want that \mathbf{c}_* minimizes $\mathbf{r} = ||\mathbf{f} \mathbf{f}_*||$

Column Space of A

- Not all *m* vectors **f** will be reachable even if we supply arbitrary *n* vectors **c**
- *Range* of A: the part of the space of *m* vectors that are reachable

 $Range(A) = \{ \mathbf{y} \in R^m : \mathbf{y} = \mathbf{A}\mathbf{x} \text{ for some } \mathbf{x} \in R^n \}$

- The range of A contains all those vectors that can be made up using the columns of \mathbf{A}
- $Rank(\mathbf{A})$ is the dimension of the range of \mathbf{A}
- Null space of **A**: those vectors x, for which Ax is zero Null(**A**) = { $\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x}=0$ }

Dim(Null(A))+Rank(A)=*n*

• Key idea: We want to minimize the error in the part that can be reached

QR decomposition

• Suppose we can write

A=Q'R'

- **Q**' is an orthonormal matrix of dimension $m \times m$
- Columns of \mathbf{Q} ' form a basis in the *m* dimensional space
- However A has only *n* vectors
- $-\mathbf{R}$ ' is a $m \times n$ matrix that can be written as $[\mathbf{R}]$

[0]

R is triangular $n \times n$ and **0** is a matrix of zeroes of size $m - n \times n$

Q' can be partitioned as [**Q Q**~] with **Q** containing *n* orthonormal columns *m* spanning column space of **A**

 \mathbf{Q}^{\sim} *m*-*n* orthonormal columns from unreachable part

• If Ax=b then (Q' R')x=b or Q'(R'x)=b or Q'y=b

- So if b is in range(A), it is also in range(Q')
- Similarly if $\mathbf{Q}'\mathbf{y}=\mathbf{b}$; then $\mathbf{b}=\mathbf{A}\mathbf{x}$ with $\mathbf{x}=\mathbf{R}^{-1}\mathbf{y}$
- Columns of \mathbf{Q} form an orthonormal basis for range(\mathbf{A})

Orthogonal Matrices

- Orthogonal matrices are square matrices that have their columns orthonormal to each other
 - dot product of different column vectors is zero, while of the same column is one
 - Denoted **Q**
 - Most trivial orthogonal matrix is the identity matrix
 - For an orthonormal matrix
 - $\mathbf{Q}^{\mathrm{t}}\mathbf{Q} = \mathbf{I}$
 - So $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathrm{T}}$

generalization: a complex matrix is *Hermitian* iff $\mathbf{Q}^{-1}=\mathbf{Q}^{H}$ where superscript ^H denotes complex conjugate transpose

Orthogonal matrix facts

- Suppose \mathbf{Q} is an orthonormal matrix
- Then for any vector **r** the Euclidean norm is preserved in an orthonormal transformation
- Proof

 $\|\mathbf{Q}r\|^2 = (\mathbf{Q}r)^t (\mathbf{Q}r) = r^t \mathbf{Q}^t \mathbf{Q} r = r^t (\mathbf{Q}^t \mathbf{Q}) r = r^t r = \|r\|^2$

 $Q_e = \left| \begin{array}{cc} I & 0 \\ 0 & Q \end{array} \right|$

- If Q is an orthonormal matrix so is the extended matrix Q_e
- Easy to show from definition that

$$Q_e^t Q_e = \mathbf{I}$$

Solving least squares with QR

- A=Q'R'
- Let r = y Ac $b = Q'^t y$
- Goal of least squares find the c that minimizes squared error (residue)
- Partition b in to two pieces
 - $-b_1$ of dimension *n*
 - $-b_2$ of dimension *m*-*n*

$$- ||\mathbf{r}||^{2} = ||\mathbf{y} - \mathbf{A}\mathbf{c}||^{2} = ||\mathbf{y} - \mathbf{Q'} \mathbf{R'} \mathbf{c}||^{2}$$

- Length is not changed by multiplication with orthogonal matrix

$$- \text{ So } ||\mathbf{r}||^2 = ||\mathbf{Q}^{\prime t}\mathbf{r}||^2 = ||\mathbf{Q}^{\prime t}[\mathbf{y} - \mathbf{Q}^{\prime}\mathbf{R}^{\prime}\mathbf{c}]||^2$$

$$= ||b_1 - R c ||^2 + ||b_2 - 0c||^2$$

So no matter what c is the second term remains unchanged If we minimize $||\mathbf{r}||^2$ the best we can do is minimize first term

Solving LS via QR

- How do we minimize $||c_1 R x||^2$
 - If R is full rank set solve Rx=c then we have done the best we can
 - (if R is rank deficient solve in least squares sense)
 - Recall R is triangular so this equation can be easily solved
- Algorithm
 - Compute QR factorization of A=Q'R'
 - Form $c_1 = Q^t b$
 - Solve $Rx=c_1$
 - If R is full rank and Q[~] is available then the norm of the residual is $||Q^{-t} b||$. Else r = b A x.

Computing the factorization

- QR is useful ... so how do we factorize a matrix A?
- In LU we computed a upper triangular matrix by computing adding multiples of other rows so that elements below a given column were zeroed out
- The multipliers were stored in L which gave us A=LU
- Here we want to zero out entries below the diagonal but do it with orthogonal matrices
- Two strategies
- Zero out a column at a time using a matrix Q_1 so that Q_1^t A gives us all entries below a certain one in a column as zero
 - Householder transformations
 - Result $Q_{n}^{t}...Q_{2}^{t}Q_{1}^{t} A = R$ or $A = Q_{1}...Q_{n-1}Q_{n} R = Q R$
- Zero out one specific entry of a column at a time
 - Givens rotations
- Product of orthogonal matrices is orthogonal

To compute QR

- Perform a sequence of orthogonal transformations that zero out elements
- Orthogonal transformations can be rotations or reflections or combinations
- Givens Rotation:
- Givens matrix has elements
- $c^2 + s^2 = 1$

• Let $z = [z_1 z_2]^t$ • We want
Gz = $\begin{bmatrix} cz_1 + sz_2 \\ sz_1 - cz_2 \end{bmatrix} = xe_1$ • Eliminate z_2 $(c^2 + s^2)z_1 = cx$, $c = z_1/x$. • Similarly we get $s = z_2/x$, and $z_1^2 + z_2^2 = x^2$

$$G = \left[\begin{array}{cc} c & s \\ s & -c \end{array} \right]$$

Givens QR

 To apply idea to larger matrix, embed the Givens matrix in identity matrix. We will use the notation G_{ij} to denote an n × n identity matrix with its ith and jth rows modified to include the Givens rotation: for example, if n = 6, then

$$G_{25} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{c} & 0 & 0 & \mathbf{s} & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & \mathbf{s} & 0 & 0 & -\mathbf{c} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{bmatrix},$$

and multiplication of a vector by this matrix leaves all but rows $2 \ {\rm and} \ 5$ of the vector unchanged.

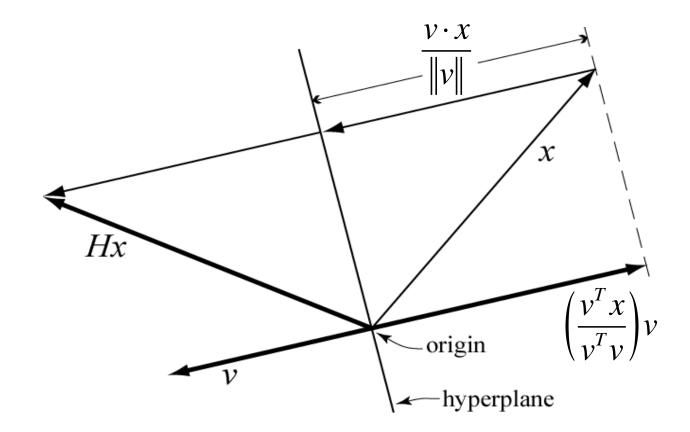
• Algorithm

for
$$i=1, ..., n$$

for $j=i+1, ..., m$
Find Givens matrix G_{ij} to zero out j, i element of A
using the the value at position (i,i)
 $A=G_{ij}A$
end
end

Householder Geometry

• *Hx* is *x* reflected through the hyperplane perpendicular to *v* (*p* : *p*^T*v*=0)



Householder Transformations

The Householder transformation determined by vector v is:

 $H = I - 2\frac{vv^{T}}{v^{T}v} \quad \text{outer product, n \times n matrix}$ inner product, scalar

To apply it to a vector *x*, compute:

$$Hx = \left(I - 2\frac{vv^{T}}{v^{T}v}\right)x = x - 2\frac{v(v^{T}x)}{v^{T}v}$$
$$Hx = x - \left(2\frac{v^{T}x}{v^{T}v}\right)v$$
scalar

Householder Properties

• *H* is symmetric, since

$$H^{T} = \left(I - 2\frac{vv^{T}}{v^{T}v}\right)^{T} = I^{T} - 2\frac{(vv^{T})^{T}}{v^{T}v} = I - 2\frac{v^{T}v^{T}}{v^{T}v} = H$$

• *H* is orthogonal, since

$$H^{T}H = HH = \left(I - 2\frac{vv^{T}}{v^{T}v}\right) \left(I - 2\frac{vv^{T}}{v^{T}v}\right)$$
$$= I - 4\frac{vv^{T}}{v^{T}v} + 4\frac{v(v^{T}v)v^{T}}{(v^{T}v)^{2}} = I - 4\frac{vv^{T}}{v^{T}v} + 4\frac{vv^{T}}{v^{T}v} = I$$

and $H^T H = I$ implies $H^T = H^{-1}$

Householder to Zero Matrix Elements

We'll use Householder transformations to zero subdiagonal elements of a matrix.

Given any vector *a*, find the *v* that determines an *H* such that,

$$Ha = \alpha e_1 = \alpha [1, 0, 0, ..., 0]^T$$

Now solve for *v*:

$$Ha = a - \left(2\frac{v^T a}{v^T v}\right)v = a - \mu v = \alpha e_1$$

where μ is parenthesized scalar, related to length of v $\Rightarrow v = (a - \alpha e_1)/\mu$ We're free to choose $\mu = 1$, since $\|v\|$ does not affect H

Choosing the Vector *v*

So $v = a - \alpha e_1$ for some scalar α . But $||Ha||_{2} = ||a||_{2}$ (prove this by expanding $||Ha||_2^2 = (Ha)^T Ha$) and $||Ha||_2 = |\alpha|$ by design, so $\alpha = \pm ||a||_2$ (either sign will work). To avoid $v \approx 0$ we choose $\alpha = -\text{sign}(a_1) \|a\|_2$, so $v = a + \operatorname{sign}(a_1) \|a\|_2 e_1$ is our answer.

Applying Householder Transforms

- Don't compute Hx explicitly, that costs $3n^2$ flops.
- Instead use the formula given previously,

$$Hx = x - \left(2\frac{v^T x}{v^T v}\right)v$$

which costs 4n flops (if you pre-compute $v^{T}v$ or prenormalize $v^{T}v=2$).

• Typically, when using Householder transformations, you never compute the matrix *H*; it's only used in derivation and analysis.

QR Decomposition

- Householder transformations are a good way to zero out subdiagonal elements of a matrix.
- A is decomposed:

$$Q^{T}A = \begin{bmatrix} R \\ 0 \end{bmatrix}$$
 or $QQ^{T}A = A = Q\begin{bmatrix} R \\ 0 \end{bmatrix}$

- where $Q^{T}=H_{n}...H_{2}H_{1}$ is the orthogonal product of Householders and *R* is upper triangular.
- Overdetermined system Ax=b is transformed into the easy-to-solve $\begin{bmatrix} R \\ 0 \end{bmatrix} x = Q^T b$
- Cost: $4mn+4(m-1)(n-1)+...4(m-n) = O(mn^2)$