
Normal equations

• The system is called the “Normal equations”

• Can solve least squares problems using these

• For A size m × n and c of size n and y of size m what are 

the dimensions of the normal equations?

– n × n

• Have converted it to a regular system that we know how 

to solve

• Solve via LU decomposition

• Solution should be accurate if the matrix AtA is well 

conditioned
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More on Normal Equations

• Normal equations are only important theoretically

• Gives us a way to think about least squares.

• In practice least squares solved via a different process

– QR decomposition

• Why?

– Somewhat expensive as we have to form At A 

– involves matrix multiplication and then solution

– More importantly it is poorly conditioned

– cond(AtA) = (cond(A))2

• Would like a method whose errors are closer to the 

condition number of A



Look at the fitting matrix in more detail

• Suppose we want to solve via least squares 

Ac=y

– A is a m × n matrix with m>n

• One way to solve was via LU decomposition of normal 

equations

– Poor condition numbers and so not recommended

– Requires matrix-matrix multiplication which is expensive

• Instead

– Look for methods that can directly operate on A to get the 

solution

– Recall in LU we did a set of transformations to A and the r.h.s. 

to find c

– Today we will look at the QR algorithm



Key Ideas

• Column space of a matrix: the vector space formed by the 

collection of column vectors in a matrix

• Every matrix vector product results in

a vector formed by linear combination 

of vectors in the column space

• A  m×n rectangular matrix A
takes n vectors into m vectors

• Let the least squares problem be Ac=f

• Let the solution which minimizes the residual be c*

• Then c* creates on matrix vector product a rhs f* that is in 
the column space of A

• We want that c* minimizes r=||f ̶  f*||



Column Space of A
• Not all m vectors f will be reachable even if we supply 

arbitrary n vectors c

• Range of A: the part of the space of m vectors that are 
reachable

Range(A) = {y  Rm : y=Ax for some x  Rn}

– The range of A contains all those vectors that can be made up 
using the columns of A

– Rank(A) is the dimension of the range of A

– Null space of A: those vectors x, for which Ax is zero

Null(A) = {x  Rn : Ax=0}

Dim(Null(A))+Rank(A)=n

• Key idea: We want to minimize the error in the part that 
can be reached



QR decomposition

• Suppose we can write 

A=Q’R’

– Q’ is an orthonormal matrix of dimension m × m

– Columns of Q’ form a basis in the m dimensional space 

– However A has only n vectors

– R’ is a m × n matrix that can be written as [R]

[0 ]

R is triangular  n × n and 0 is a matrix of zeroes of size m-n × n

Q’ can be partitioned as [Q Q~] with Q containing n orthonormal 
columns m spanning column space of A

Q~ m-n orthonormal columns from unreachable part

• If Ax=b then (Q’ R’)x=b or Q’(R’x)=b or Q’y=b

– So if b is in range(A), it is also in range(Q’)

– Similarly if Q’y=b; then b=Ax with x=R-1y

– Columns of Q form an orthonormal basis for range(A)



Orthogonal Matrices

• Orthogonal matrices are square matrices that have their 

columns orthonormal to each other

– dot product of different column vectors is zero, while of the 

same column is one

– Denoted Q

– Most trivial orthogonal matrix is the identity matrix

– For an orthonormal matrix

– QtQ=I

– So Q-1=QT

generalization: a complex matrix is Hermitian iff Q-1=QH

where superscript H denotes complex conjugate transpose



Orthogonal matrix facts

• Suppose Q is an orthonormal matrix

• Then for any vector r the Euclidean norm is preserved in 

an orthonormal transformation

• Proof

||Qr||2=(Qr)t (Qr)= rt Qt Q r = rt (Qt Q) r =rt r =||r||2

• If Q is an orthonormal matrix 

so is the extended matrix Qe

• Easy to show from definition that 

Qe
t Qe = I



Solving least squares with QR

• A=Q’R’

• Let         r= y-Ac b=Q’t y

• Goal of least squares find the c that minimizes squared 

error (residue)

• Partition b in to two pieces

– b1 of dimension n

– b2 of dimension m-n

– ||r||2 = || y- Ac||2 = ||y –Q’ R’ c||2

– Length is not changed by multiplication with orthogonal matrix

– So ||r||2 =||Q’tr||2 =||Q’t [y –Q’ R’ c]||2

=||b1 – R c ||2 + ||b2 – 0c||2

So no matter what c is the second term remains unchanged

If we minimize ||r||2 the best we can do is minimize first term 



Solving LS via QR

• How do we minimize ||c1 – R x ||2 

– If R is full rank set solve Rx=c then we have done the best we 

can

– (if R is rank deficient solve in least squares sense)

– Recall R is triangular so this equation can be easily solved

• Algorithm

– Compute QR factorization of A=Q’R’

– Form c1=Qt b

– Solve Rx=c1

– If R is full rank and Q~ is available then the norm of the 

residual is ||Q~t b||. Else r = b – A x.



Computing the factorization

• QR is useful … so how do we factorize a matrix A?

• In LU we computed a upper triangular matrix by computing adding 
multiples of other rows so that elements below a given column were 
zeroed out

• The multipliers were stored in L which gave us A=LU

• Here we want to zero out entries below the diagonal but do it with 
orthogonal matrices

• Two strategies

• Zero out a column at a time using a matrix Q1 so that Qt
1 A gives us 

all entries below a certain one in a column as zero

– Householder transformations

– Result Qt
n…Qt

2Q
t
1 A =R  or A = Q1…Qn-1Qn R =Q R

• Zero out one specific entry of a column at a time

– Givens rotations

• Product of orthogonal matrices is orthogonal



To compute QR

• Perform a sequence of orthogonal transformations that 

zero out elements

• Orthogonal transformations can be rotations or 

reflections or combinations

• Givens Rotation:

• Givens matrix has elements 

• c2+s2=1

• How do we use a rotation to zero out an element?

• Let z= [z1 z2]
t 

• We want 

• Eliminate z2

• Similarly we get s=z2/x,  and z1
2+z2

2 = x2



Givens QR
• To apply idea to larger matrix, embed the Givens matrix in  identity

• Algorithm for i=1, …,n
for j=i+1, …, m

Find Givens matrix Gijto zero out j,i element of A
using the the value at position (i,i)

A=GijA

end

end
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Householder Geometry

• Hx is x reflected through the hyperplane 

perpendicular to v (p : pTv=0)



Householder Transformations

The Householder transformation determined by vector  v is:

To apply it to a vector x, compute:
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Householder Properties

• H is symmetric, since

• H is orthogonal, since
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Householder to Zero Matrix Elements

We’ll use Householder transformations to zero 

subdiagonal elements of a matrix.

Given any vector a, find the v that determines an H such 

that,

Now solve for v:
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Choosing the Vector v
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Applying Householder Transforms

• Don’t compute Hx explicitly, that costs 3n2 flops.

• Instead use the formula given previously,

which costs 4n flops (if you pre-compute vTv or pre-

normalize vTv=2).

• Typically, when using Householder transformations, you 

never compute the matrix H; it’s only used in derivation 

and analysis.
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QR Decomposition

• Householder transformations are a good way to zero out 

subdiagonal elements of a matrix.

• A is decomposed:

• where QT=Hn…H2H1 is the orthogonal  product of 

Householders and R is upper triangular.

• Overdetermined system Ax=b is transformed into the 

easy-to-solve

• Cost: 4mn+4(m-1)(n-1)+…4(m-n) =O(mn2)
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