QR Decomposition

- Householder transformations are a good way to zero out subdiagonal elements of a matrix.
- A is decomposed:

$$Q^{T}A = \begin{bmatrix} R \\ 0 \end{bmatrix}$$
 or $QQ^{T}A = A = Q\begin{bmatrix} R \\ 0 \end{bmatrix}$

- where $Q^{T}=H_{n}...H_{2}H_{1}$ is the orthogonal product of Householders and *R* is upper triangular.
- Overdetermined system Ax=b is transformed into the easy-to-solve $\begin{bmatrix} R \\ 0 \end{bmatrix} x = Q^T b$

• Cost:
$$4mn+4(m-1)(n-1)+...4(m-n) = O(mn^2)$$

Rank Revealing QR

• for i = 1 : n,

•

- Among columns i : n of the current A matrix, compute column norms
- If, max column norm is below threshold stop
- Else, move column with largest norm to the ith column, and store permutation
 - Perform Householder reflection to put zeros below row i in column i of A.
 - Use Householder to transform rest of the matrix A
- end for
- In Matlab, [Q,R,P] = qr(A,0) produces a RRQR
- Cost of RR-QR slightly higher than just QR because of the norm computation of columns at each step

Other Norms

- Here we fit using the "least-squares" or L_2 norm
- Could minimize the residual in other norms
- For example we may have more confidence in some data, and want to be sure that their residual is lower ______
 - Attach a weight to each residual

$$||r||_w^2 = \sum_{i=1}^m w_i r_i^2$$

- Leads to the problem
- $A^{t}WAc = A^{t}W^{1/2}y$ or $(A^{t}W^{1/2})(W^{1/2}A)c = (A^{t}W^{1/2})y$
- Can be solved via normal equations or preferably via QR decomposition of the matrix $W^{1/2}A$
- Or we may like the 1-norm or infinity norm better

$$||r||_1 = \sum_{i=1}^{m} |r_i|$$
 $||r||_{\infty} = \max_{i} |r_i|$

Eigen Values of a Matrix

- Definition:
- A N×N matrix A has an eigenvector x (non-zero) with corresponding eigenvalue λ if

$Ax = \lambda x$

• This means

 $\mathbf{A}\mathbf{x} - \lambda \mathbf{x} = 0 \qquad (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = 0$

- If two numbers multiply to zero one of them is zero
- If a matrix vector product gives a zero vector, then either the vector is zero, or the matrix has zero determinant (is singular).

Solving for eigenvalues

- The zero vector is not an eigenvector (nothing special about A0=0)
- So we need $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0 \qquad \|\mathbf{x}\|_2 \neq 0$ $\det(\mathbf{A}-\lambda \mathbf{I})=0$
- Evaluating the determinant we get an *N*th degree polynomial equation, which can be solved for *N* roots
 Could be solved numerically using zero finding algorithms
- So a $N \times N$ matrix has at most N eigenvalues

Characteristic Equation

• $A\mathbf{x} = \lambda \mathbf{x}$ can be written as

 $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$

which holds for $x \neq 0$, so (A- λ I) is singular and

 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$

- This is called the characteristic polynomial. If A is $n \times n$ the polynomial is of degree *n* and so A has *n* eigenvalues, counting multiplicities.
- Eigenvalues need not be distinct.
 - E.g. eigenvalues of identity matrix are given by solution of

 $(1-\lambda)^{n} = 0$

• So the matrix has N repeated eigenvalues equal to 1

Example

$$A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \qquad A - \lambda I = \begin{pmatrix} 4 - \lambda & 3 \\ 1 & 2 - \lambda \end{pmatrix}$$
$$\det(A - \lambda I) = 0 \implies (4 - \lambda)(2 - \lambda) - (1)(3) = 0$$
$$\lambda^2 - 6\lambda + 5 = 0 \implies (\lambda - 5)(\lambda - 1) = 0$$

• Hence the two eigenvalues are 1 and 5.

Example (continued)

• Once we have the eigenvalues, the eigenvectors can be obtained by substituting back into $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

$$A - \lambda_1 I = \begin{pmatrix} 4 - 5 & 3 \\ 1 & 2 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -3 \end{pmatrix}$$
$$A - \lambda_2 I = \begin{pmatrix} 4 - 1 & 3 \\ 1 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 1 & 1 \end{pmatrix}$$

- Eigen vectors should give a zero vector when multiplied.
- This gives eigenvectors $(1 1)^T$ and $(1 \frac{1}{3})^T$
- Note that we can scale the eigenvectors any way we want.

Assorted properties of eigenvalues & eigenvectors

- Shift eigenvalues of a matrix by τ .

– Let

Ax= λ x

- Add $-\tau \mathbf{x}$ to both sides

(A-t I)x=(
$$\lambda$$
-t) x

- We get a new matrix

 $\mathbf{B}=(\mathbf{A}\boldsymbol{\cdot}\boldsymbol{\tau}\;\mathbf{I})$

- Shifted eigenvalue $(\lambda \tau)$
- Same eigenvector x
- Eigenvectors are not in general normalized:
 - If \mathbf{x} is an eigenvector so is $\alpha \mathbf{x}$.
 - Often in software we may normalize eigenvectors to have $\|\mathbf{x}\|_2 = 1$
- The term *eigenvalue* is a partial translation of the German "eigenvert." A complete translation would be something like "own value" or "characteristic value".

Eigenvalues and eigenvectors

- Recall a *N* × *N* matrix maps *N* dimensional vectors to other *N* dimensional vectors
 - In general it maps elements in \mathbb{R}^N to other elements in \mathbb{R}^N
- Eigenvectors and eigenvalues provide basic information about this mapping
 - Identify special vectors which remain untransformed (or are just scaled)
- Important in many areas
 - Quantum mechanics energy levels
 - Acoustics fundamental frequencies of drums or columns
 - Stability theory resonant frequencies or critical values of parameters

Eigen-value decomposition

- Represent the matrix in terms of its eigenvalues and eigenvectors
- A $N \times N$ matrix has N eigenvalues and eigen vectors
- Write the *N* equations

$$\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

- by stacking the vectors \mathbf{x}_i as columns of a matrix \mathbf{X} and the constants λ_i along the diagonal of a matrix
- We get

$AX = X\Lambda$

• If all eigenvectors are independent, then X⁻¹ exists, and so

$$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{X}^{-1}\mathbf{X}\boldsymbol{\Lambda} = \boldsymbol{\Lambda}$$

$$\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}$$

• This is the **eigenvalue decomposition** of a matrix **A**

Left and Right Eigenvectors

• So far we just talked about matrix products

Ax=
$$\lambda$$
 x

• For a N × N matrix we can also define a left matrix product

• So if we have

$$y^t A = \lambda y$$

then y is a left eigenvector of A

- If A is symmetric A=A^t
- $(Ax)^t = x^t A^t = x^t A$
- So left and right eigenvectors of a symmetric matrix are the same

Symmetric Matrices

- A matrix is symmetric if its transpose is equal to itself
- Eigenvalues and Eigenvectors of a real symmetric matrix are real and eigenvectors are orthogonal.
- A matrix A is *positive definite* if for every nonzero vector \mathbf{x} the quadratic form $\mathbf{x}^{t}A\mathbf{x} > 0$.
- If A is positive definite and λ and x are an eigenvalue/eigenvector pair, then:

 $A {\boldsymbol x} = \lambda \; {\boldsymbol x} \qquad \quad {\boldsymbol x}^t A {\boldsymbol x} = \lambda \; {\boldsymbol x}^t {\boldsymbol x}$

- Since $\mathbf{x}^t \mathbf{A} \mathbf{x}$ and $\mathbf{x}^t \mathbf{x}$ are both positive it follows that λ is positive.
- If A is a positive definite matrix then:
 - A is nonsingular.
 - The inverse of A is positive definite.
 - Gaussian elimination can be performed on A without pivoting.
 - The eigenvalues of A are positive.

Use of the eigenvalue decomposition

- Can use it to study the properties of A
- Recall condition number definition $\operatorname{cond}(A) = \kappa(A) = ||A|| \cdot ||A^{-1}||$

 $= \frac{\text{maximum stretch}}{\text{maximum shrink}} = \frac{\max_{i} |\lambda_{i}|}{\min_{i} |\lambda_{i}|}$

- Natural frequencies of the matrix
- Powers of a matrix

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$A(A\mathbf{x}) = \mathbf{A} (\lambda \mathbf{x}) = \lambda \mathbf{A}\mathbf{x} = \lambda^2 \mathbf{x}$$
$$\mathbf{A}^n \mathbf{x} = \lambda^n \mathbf{x}$$

• Apply same idea to EVD

$$\mathbf{A}^{n} = \mathbf{X} \Lambda^{n} \mathbf{X}^{-1}$$

Example

• Let *A* = [-149 -50 -154; 537 180 546; -27 -9 -25]

This matrix was constructed in such a way that the characteristic polynomial factors nicely.

- $\det(A \lambda I) = \lambda^3 6\lambda^2 + 11\lambda 6 = (\lambda 1)(\lambda 2)(\lambda 3)$
- Consequently the three eigenvalues are $\lambda_1 = 1, \lambda_2 = 2$, and $\lambda_3 = 3$, and $\Lambda = [1 \ 0 \ 0; \ 0 \ 2 \ 0; \ 0 \ 0 \ 3]$
- The matrix of eigenvectors is

• It turns out that the inverse of *X* also has integer entries.

X⁻¹ = [130 43 133 ; 27 9 28 ; -3 -1 -3]

• These matrices provide the eigenvalue decomposition of our example $A = XA X^{-1}$

Eigshow

- Eigen values of 2× 2 matrix represent transformations in the plane
- Ideas of symmetry