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Eigshow

» Eigen values of 2x 2 matrix represent transformations in
the plane

* ldeas of symmetry

The Power Method

« Label the eigenvalues in order of decreasing absolute
valueso | A > A o>... | A .
+ Consider the iteration formula:
yk+1 = Ayk
where we start with some initial y,, so that:
Yk = Aky,
» Theny, converges to the eigenvector x, corresponding
the eigenvalue A ;.
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Eigen Decomposition

Recall from previous class the Eigen decomposition
Let A, A,,..., A , be the eigenvalues of the nx n matrix A and

X1, %o, .,X, the corresponding eigenvectors.

Let A be the diagonal matrix with A 4, A ,,..., A , on the main
diagonal.
Let X be the nx n matrix whose jth column is x;.

Then AX = X A, and so we have the eigen decomposition of
A:

A=XA X1
This requires X to be invertible, thus the eigenvectors of A
must be linearly independent.

Powers of Matrices

Also recall
If A=X'A X1then:
A2 = (XEA XD(XEA X 1) = XEA (XIX) A X1= XA 2X1
Hence we have:
AP = Xt A PX-L
Thus, AP has the same eigenvectors as A, and its eigenvalues are
APy AP AP
We can use these results as the basis of an iterative algorithm for
finding the eigenvalues of a matrix.
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Proof

« We know that Ak = X A kX1, so:
Yi = ARy = X A KXy,
» Now we have:

ik ik

n

2

» The terms on the diagonal get smaller in absolute value ad K
increases, since A , is the dominant eigenvalue.

Proof (continued)

» So we have

k k
Ye=A| X 0 X . : = 40X

0)c,

« Since A ,¥c, X, is just a constant times x, then we have the
required result.




Example

Let A=[2-12; 1 -5] and y,=[1 1]’
y, = -4[2.50 1.00]’

y, = 10[2.80 1.00]’

Y, = -22[2.91 1.00]’

Y, = 46[2.96 1.00]’

Vs = -94[2.98 1.00]’

Ve = -190[2.99 1.00]’

The iteration is converging on a scalar multiple of [3 1]°, which is
the correct dominant eigenvector.

Rayleigh Quotient

 Note that once we have the eigenvector, the
corresponding eigenvalue can be obtained from the
Rayleigh quotient:
dot(Ax,x)/dot(x,x)
where dot(a,b) is the scalar product of vectors a and b
defined by:
dot(a,b) = a,b,+a,b,+...+a b,
« So for our example, A ;= -2.
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Scaling

 The A (K can cause problems as it may become very large

or small as the iteration progresses.

» To avoid this problem we scale the iteration formula:

Yirr = AWV /M1
where r,,, is the component of Ay, with largest absolute
value.

Example with Scaling
Let A=[2-12;1-5] and y,=[1 1]’
Ay, = [-10 -4]’ so r;=-10 and y,=[1.00 0.407]".
Ay, =[-2.8-1.0]" so r,=-2.8 and y,=[1.0 0.35717]".
Ay, = [-2.2857 -0.7857]” so r;=-2.2857 and y,=[1.0 0.3437]".
Ay, =[-2.1250 -0.7187]” so r,=-2.1250 and y,=[1.0 0.3382]".
Ay, = [-2.0588 -0.6912]" so r;=-2.0588 and y:=[1.0 0.3357]".
r is converging to the correct eigenvalue -2.

At step k+1, the scaling factor r,,, is the component with
largest absolute value is Ay,.
When Kk is sufficiently large Ay, S A 1Y,.

The component with largest absolute value in A ;y, is A ; (since
Y, was scaled in the previous step to have largest component
1).

Hence, ., \.T A as k -> .
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Convergence

The Power Method relies on us being able to ignore terms of the
form (A j/ A ¥ when k is large enough.

Thus, the convergence of the Power Method depends on | A ,|/| A 4].
If | A /| A ;|=1 the method will not converge.
If | A /| A 4| is close to 1 the method will converge slowly.

The QR Algorithm

» The QR algorithm for finding eigenvalues is based on
the QR factorisation we learnt in the least squares part
of the course

 Recall the QR factorization represents a matrix A as:

A=QR
where Q is a matrix whose columns are orthonormal,
and R is an upper triangular matrix.

 Recall that Q'Q = | and Q-1=Q..




Similar Matrices

Two matrices A and B are said to be similar it is possible to relate

them as

B=T1AT TBT1=A
Here T is any non singular matrix, which is the similarity
transform matrix

Theorem: Similar matrices have the same eigenvalues and their
eigen-vectors are related via the similarity transform.

Proof. Let (x,A) be an eigen-pair for A. Then Ax=A\ Xx.

Let y=T-'x and x=Ty

Then Ax=A X.

Premultiply by T-1 toget TIATT1x =X Tx
So By=Ay

EVD

EVD is a similarity transform that takes A to a diagonal
matrix using a matrix of eigenvectors.

Eigenvalue decomposition requires solving of a general
polynomial equation.

— Even if matrix has real entries eigenvalues can be complex

— S0 can eigenvectors

Eigenvectors provide a set of basis vectors in which the
matrix becomes diagonal
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QR Algorithm without Shifts

A=A

for k=1,2,...
QuRy = Ay
A1 = RQy

end

Since:

A= R Qg = QA Q,

then A, and A, are
similar and so have the
same eigenvalues.

A, tends to an upper triangular matrix with the
same eigenvalues as A. These eigenvalues lie
along the main diagonal of A, ,;.

MATLAB Code for QR Algorithm

« Let A be an nx n matrix

n =size(A,1);
| = eye(n,n);

s=A(n,n); [Q,R] = gr(A-s*1); A = R*Q+s*I
 Use the up arrow key in MATLAB to iterate or put a loop

round the last line.
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Deflation

» The eigenvalue at A(n,n) will converge first.

« Then we set s=A(n-1,n-1) and continue the iteration until
the eigenvalue at A(n-1,n-1) converges.

» Then set s=A(n-2,n-2) and continue the iteration until the
eigenvalue at A(n-2,n-2) converges, and so on.

» This process is called deflation.

The SVD

« Definition: Every matrix A of dimensions m xn (m =n)
can be decomposed as
A=UXW
» where
— U has dimension m xmand UtU =,

— X has dimension m xn,

the only nonzeros are on the main diagonal, and they are
nonnegative real numbers ¢, > o, > ... > g,

— V has dimensionn xnand V!V = 1.
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Relation with the Eigenvalue Decomposition

e LetA=U XVt Then
AtA = (UZVHt UV
= VItUtuivi=vie vt
* This tells us that the singular value decomposition of A is
related to the Eigenvalue decomposition of At A

 Recall eigen value decomposition A= (X A XY
— So V which contains the right singular vectors of A has the
right eigenvectors of At A
1 22 are the eigenvalues of At A
— The singular values o; of A are the square roots of the
eigenvalues of At A.

Relation with the Eigenvalue Decomposition (2)

e LetA=U2XV.Then
A A= (U2VY) (UXVHt
= Uzvvyut=uz2 Ut
* This tells us that the singular value decomposition of A is
related to the Eigenvalue decomposition of AA'
* Recall eigen value decomposition A= (X A Xt
— So U contains the the left singular vectors of A, which are also

the left eigenvectors of AA!

'] 22 are the eigenvalues of AAt and the singular values o; of A
are the square roots of the eigenvalues of AA!
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Economy-sized SVD
A = u ) v
A = 1} ) v
Computing the SVD

« The algorithm is a variant on algorithms for computing
eigendecompositions.

— rather complicated, so better to use a high-quality existing code
rather than writing your own.

 In Matlab: [U,S,V] = svd(A)

 The cost is O(mn?) when m= n. The constant is of order
10.
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Uses of the SVVD

 Recall to solve least squares problems we could look at
the normal equations (A"Ax=A"b)

— So, SVD is closely related to solution of least-squares
— Used for solving ill conditioned least-squares

 Used for creating low-rank approximations
 Both applications are related

SVD and reduced rank approximation

Ax=b A1is mxn, x1is nx{ and b 1s mx{.

A=USV’where U is mxm, S is mxn and V is nxn

USV’ x=b. So SV’ x=U'b

If A has rank r, then » singular values are significant
Vix=diag(c,”,....6,1,0, ..., )Ub

x= Vdiag(c,",....0,1,0, ..., 0)Ub
S ub
X, = —V, G,>¢, G,
]-2:] G(- +1

« We can truncate r at any value and achieve “reduced-
rank” approximation to the matrix

* For ordered signular values, this gives the “best reduced
rank approximation”
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*Pseudoinverse A*=V diag(c,’,...,o

SVD and pseudo inverse

10, ..., 0) Ut
—A*is a nxm matrix.
—Ifrank (A) =n then A"=(A'A)'A

—If A is square A=A

w NP

Well posed problems

Hadamard postulated that for a problem to be “well posed”
Solution must exist

It must be unique

Small changes to input data should cause small changes to solution

Many problems in science and computer vision result in “ill-
posed” problems.
— Numerically it is common to have condition 3 violated.
— Recall from the SVD ~ u.b
X = 2‘, 0_’ v,

<e

r+l =

G,>€, ©

If the o are close to zero small changes in the “data” vector b cause
big changes in x.

Converting ill-posed problem to well-posed one is called
regularization.
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SVD and Regularization

» Pseudoinverse provides one means of regularization
« Another is to solve (A+el)x=b , _ Z O _(u'b)v,
« Solution of the regular problem =1 &0,
requires minimizing of ||Ax-b||?
+ Solving this modified problemcorresponds to minimizing
[IAX-bII? + ][]
 Philosophy — pay a “penalty” of O(¢) to ensure solution
does not blow up.

* In practice we may know that the data has an uncertainty
of a certain magnitude ... so it makes sense to optimize
with this constraint.

* Ill-posed problems are also called “ill-conditioned”

SVD and Pseudo-Inverse

» Ax=b Aismxn, x1s nx/ and b is mx/.

* A=USV’where U is mxm, S is mxn and V is nxn

+ USV’x=b. So SV x=Ub

» If A has rank r, then r singular values are significant
Vix=diag(o,,....5.1 .0, ..., 0)Ub
x= Vdiag(c,",....0,1,0, ..., 0)Ub

r t
ub
X, =y ——v, 6,>¢, ©
- 5
i=1 i

*Pseudoinverse A*=V diag(c,,...,6, 1,0, ..., 0) Ut
—A"is a nxXm matrix.
—Ifrank (A) =n then A"=(A'A)'A

—If A is square A™=A"!
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