Eigshow

- Eigen values of 2× 2 matrix represent transformations in the plane
- Ideas of symmetry

The Power Method

- Label the eigenvalues in order of decreasing absolute value so $|\lambda_1| > |\lambda_2| > \dots |\lambda_n|$.
- Consider the iteration formula:

$$\mathbf{y}_{k+1} = \mathbf{A}\mathbf{y}_k$$

where we start with some initial \mathbf{y}_0 , so that:

$$\mathbf{y}_{k} = \mathbf{A}^{k} \mathbf{y}_{0}$$

• Then \mathbf{y}_k converges to the eigenvector \mathbf{x}_1 corresponding the eigenvalue λ_1 .

Eigen Decomposition

- Recall from previous class the Eigen decomposition
- Let λ₁, λ₂,..., λ_n be the eigenvalues of the n× n matrix A and x₁,x₂,...,x_n the corresponding eigenvectors.
- Let A be the diagonal matrix with $\lambda_1, \lambda_2, \ldots, \lambda_n$ on the main diagonal.
- Let X be the $n \times n$ matrix whose jth column is \mathbf{x}_{i} .
- Then AX = X Λ, and so we have the *eigen decomposition* of A:

$A = X^t \wedge X^{\text{-}1}$

• This requires X to be invertible, thus the eigenvectors of A must be linearly independent.

Powers of Matrices

- Also recall
- If $A = X^t \Lambda X^{-1}$ then:

 $A^2 = (X^t \wedge X^{-1})(X^t \wedge X^{-1}) = X^t \wedge (X^{-1}X) \wedge X^{-1} = X^t \wedge {}^2X^{-1}$ Hence we have:

 $A^p = X^t \Lambda p X^{-1}$

- Thus, A^p has the same eigenvectors as A, and its eigenvalues are $\lambda_1^{p}, \lambda_2^{p}, \dots, \lambda_n^{p}$.
- We can use these results as the basis of an iterative algorithm for finding the eigenvalues of a matrix.

Proof

• We know that $A^{k} = X \Lambda^{k} X^{-1}$, so: $\mathbf{y}_{k} = A^{k} \mathbf{y}_{0} = X \Lambda^{k} X^{-1} \mathbf{y}_{0}$ • Now we have: $\Lambda^{k} = \begin{pmatrix} \lambda_{1}^{k} & & \\ & \lambda_{2}^{k} & \\ & & \ddots & \\ & & & \lambda_{n}^{k} \end{pmatrix} = \lambda_{1}^{k} \begin{pmatrix} 1 & & & \\ & \lambda_{2}^{k} & & \\ & & \lambda_{1}^{k} & \\ & & & \ddots & \\ & & & & \lambda_{n}^{k} \end{pmatrix}_{1}^{k}$ • The terms on the diagonal get smaller in absolute value as k increases, since λ_{1} is the dominant eigenvalue.

Example

- Let A = [2 12; 1 5] and $\mathbf{y}_0 = [1 \ 1]'$
- $\mathbf{y}_1 = -4[2.50 \ 1.00]$ '
- $\mathbf{y}_2 = 10[2.80\ 1.00]$ '
- **y**₃ = -22[2.91 1.00]'
- $\mathbf{y}_4 = 46[2.96\ 1.00]$ '
- **y**₅ = -94[2.98 1.00]'
- $\mathbf{y}_6 = -190[2.99\ 1.00]$
- The iteration is converging on a scalar multiple of [3 1]', which is the correct dominant eigenvector.

Rayleigh Quotient

• Note that once we have the eigenvector, the corresponding eigenvalue can be obtained from the *Rayleigh quotient*:

dot(Ax,x)/dot(x,x)

where dot(**a**,**b**) is the scalar product of vectors **a** and **b** defined by:

 $dot(\mathbf{a},\mathbf{b}) = a_1b_1 + a_2b_2 + \ldots + a_nb_n$

• So for our example, $\lambda_1 = -2$.

Scaling

- The λ_1^{k} can cause problems as it may become very large or small as the iteration progresses.
- To avoid this problem we scale the iteration formula:

$$\mathbf{y}_{k+1} = \mathbf{A}(\mathbf{y}_k / \mathbf{r}_{k+1})$$

where r_{k+1} is the component of $A \boldsymbol{y}_k$ with largest absolute value.

Example with Scaling

- Let A = [2 12; 1 5] and $y_0 = [1 1]'$
- $Ay_0 = [-10 4]$ ' so $r_1 = -10$ and $y_1 = [1.00 0.40]$ '.
- $Ay_1 = [-2.8 1.0]$ ' so $r_2 = -2.8$ and $y_2 = [1.0 \ 0.3571]$ '.
- $Ay_2 = [-2.2857 0.7857]$ ' so $r_3 = -2.2857$ and $y_3 = [1.0 \ 0.3437]$ '.
- $Ay_3 = [-2.1250 0.7187]$ ' so $r_4 = -2.1250$ and $y_4 = [1.0 \ 0.3382]$ '.
- $Ay_4 = [-2.0588 0.6912]$ ' so $r_5 = -2.0588$ and $y_5 = [1.0 \ 0.3357]$ '.
- r is converging to the correct eigenvalue -2.
- At step k+1, the scaling factor r_{k+1} is the component with largest absolute value is Ay_k.
- When k is sufficiently large $A\mathbf{y}_k \Im \lambda_1 \mathbf{y}_k$.
- The component with largest absolute value in λ₁y_k is λ₁ (since y_k was scaled in the previous step to have largest component 1).
- Hence, $r_{k+1} \leq T \lambda_1$ as $k \to \infty$.

Convergence

- The Power Method relies on us being able to ignore terms of the form $(\lambda_i / \lambda_1)^k$ when k is large enough.
- Thus, the convergence of the Power Method depends on $|\lambda_2|/|\lambda_1|$.
- If $|\lambda_2|/|\lambda_1|=1$ the method will not converge.
- If $|\lambda_2|/|\lambda_1|$ is close to 1 the method will converge slowly.

The QR Algorithm

- The QR algorithm for finding eigenvalues is based on the QR factorisation we learnt in the least squares part of the course
- Recall the QR factorization represents a matrix A as: A = QR

where Q is a matrix whose columns are orthonormal, and R is an upper triangular matrix.

• Recall that $Q^tQ = I$ and $Q^{-1}=Q^t$.

EVD

- EVD is a similarity transform that takes A to a diagonal matrix using a matrix of eigenvectors.
- Eigenvalue decomposition requires solving of a general polynomial equation.
 - Even if matrix has real entries eigenvalues can be complex
 - So can eigenvectors
- Eigenvectors provide a set of basis vectors in which the matrix becomes diagonal

Deflation

- The eigenvalue at A(n,n) will converge first.
- Then we set s=A(n-1,n-1) and continue the iteration until the eigenvalue at A(n-1,n-1) converges.
- Then set s=A(n-2,n-2) and continue the iteration until the eigenvalue at A(n-2,n-2) converges, and so on.
- This process is called *deflation*.

The SVD

• **Definition:** Every matrix *A* of dimensions $m \times n$ ($m \ge n$) can be decomposed as

$$A = U \, \varSigma \, V^t$$

- where
 - *U* has dimension $m \times m$ and $U^t U = I$,
 - Σ has dimension $m \times n$,
 - the only nonzeros are on the main diagonal, and they are nonnegative real numbers $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$,
 - V has dimension $n \times n$ and $V^{t} V = I$.

Relation with the Eigenvalue Decomposition

• Let $A = U \Sigma V^t$. Then

 $A^t A = (U \Sigma V^t)^t U \Sigma V^t$

 $= V \varSigma^{t} U^{t} U \varSigma V^{t} = V \varSigma^{2} V^{t}$

- This tells us that the singular value decomposition of *A* is related to the Eigenvalue decomposition of *A^t A*
- Recall eigen value decomposition $A = (X \land X^t)$
 - So V which contains the right singular vectors of A has the right eigenvectors of $A^{t} A$
 - $\Box \Sigma^2$ are the eigenvalues of $A^t A$
 - The **singular values** σ_i of *A* are the square roots of the **eigenvalues** of $A^t A$.

Uses of the SVD

- Recall to solve least squares problems we could look at the normal equations (A*Ax=A*b)
 - So, SVD is closely related to solution of least-squares
 - Used for solving ill conditioned least-squares
- Used for creating low-rank approximations
- Both applications are related

SVD and reduced rank approximation

- Ax=b A is $m \times n$, x is $n \times 1$ and b is $m \times 1$.
- **A=USV**^t where **U** is $m \times m$, **S** is $m \times n$ and **V** is $n \times n$
- $USV^t x=b$. So $SV^t x=U^t b$
- If A has rank r, then r singular values are significant
 V^tx = diag(σ₁⁻¹,...,σ_r⁻¹,0,...,0)U^tb
 x = Vdiag(σ₁⁻¹,...,σ_r⁻¹,0,...,0)U^tb

$$\mathbf{x}_{r} = \sum_{i=1}^{r} \frac{\mathbf{u}_{i}^{t} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} \qquad \sigma_{r} > \varepsilon, \quad \sigma_{r+1} \le \varepsilon$$

- We can truncate *r* at any value and achieve "reduced-rank" approximation to the matrix
- For ordered signular values, this gives the "best reduced rank approximation"

SVD and pseudo inverse

•Pseudoinverse $\mathbf{A}^{+}=\mathbf{V} \operatorname{diag}(\boldsymbol{\sigma}_{1}^{-1},\ldots,\boldsymbol{\sigma}_{r}^{-1},0,\ldots,0) \mathbf{U}^{t}$

 $-\mathbf{A}^+$ is a *n*×*m* matrix.

-If rank (A) =n then A⁺=(A^tA)⁻¹A

-If A is square $A^+=A^{-1}$

Well posed problems

- Hadamard postulated that for a problem to be "well posed"
- 1. Solution must exist
- 2. It must be unique
- 3. Small changes to input data should cause small changes to solution
- Many problems in science and computer vision result in "illposed" problems.
 - Numerically it is common to have condition 3 violated.

Recall from the SVD
$$\mathbf{x} = \sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{t} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}$$
 $\sigma_{r} > \varepsilon, \sigma_{r+1} \le \varepsilon$

If the σ are close to zero small changes in the "data" vector \boldsymbol{b} cause big changes in $\boldsymbol{x}.$

• Converting ill-posed problem to well-posed one is called *regularization*.

SVD and Regularization

- Pseudoinverse provides one means of regularization
- Another is to solve (**A**+ɛ**I**)**x**=**b**

$$\mathbf{x} = \sum_{i=1}^{n} \frac{\boldsymbol{\sigma}_{i}}{\varepsilon + \boldsymbol{\sigma}_{i}^{2}} (\mathbf{u}_{i}^{t} \mathbf{b}) \mathbf{v}_{i}$$

- Solution of the regular problem requires minimizing of $||Ax-b||^2$
- Solving this modified problem corresponds to minimizing $\|\mathbf{Ax}\textbf{-b}\|^2 + \epsilon \|\mathbf{x}\|^2$
- Philosophy pay a "penalty" of O(ε) to ensure solution does not blow up.
- In practice we may know that the data has an uncertainty of a certain magnitude ... so it makes sense to optimize with this constraint.
- Ill-posed problems are also called "ill-conditioned"

