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Eigshow 

• Eigen values of 2× 2 matrix represent transformations in 

the plane 

• Ideas of symmetry 

The Power Method 

• Label the eigenvalues in order of decreasing absolute 
value so |  1|>|  2|>… |  n|. 

• Consider the iteration formula: 

    yk+1 = Ayk 

 where we start with some initial y0, so that: 

    yk = Aky0 

• Then yk converges to the eigenvector x1 corresponding 
the eigenvalue  1. 
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Eigen Decomposition 

• Recall from previous class the Eigen decomposition 
• Let  1,  2,…,  n be the eigenvalues of the n£ n matrix A and 

x1,x2,…,xn the corresponding eigenvectors. 

• Let  be the diagonal matrix with  1,  2,…,  n on the main 
diagonal. 

• Let X be the n£ n matrix whose jth column is xj. 

• Then AX = X , and so we have the eigen decomposition of 
A: 

    A = Xt  X-1 

• This requires X to be invertible, thus the eigenvectors of A 
must be linearly independent. 

Powers of Matrices 

• Also recall 

• If A = Xt  X-1 then: 

  A2 = (Xt  X-1)(Xt  X-1) = Xt  (X-1X)  X-1 = Xt  2X-1 

 Hence we have:  

  Ap = Xt  pX-1 

• Thus, Ap has the same eigenvectors as A, and its eigenvalues are 
 1

p,  2
p,…,  n

p. 

• We can use these results as the basis of an iterative algorithm for 
finding the eigenvalues of a matrix. 
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Proof 

• We know that Ak = X  kX-1, so: 

    yk = Aky0 = X  kX-1y0 

• Now we have: 
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• The terms on the diagonal get smaller in absolute value as k 

increases, since  1 is the dominant eigenvalue. 

Proof (continued) 

• So we have 
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• Since  1
k c1 x1 is just a constant times x1 then we have the 

required result. 
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Example 

• Let A = [2 -12; 1 -5] and y0=[1 1]’ 

• y1 = -4[2.50 1.00]’ 

• y2 = 10[2.80 1.00]’ 

• y3 = -22[2.91 1.00]’ 

• y4 = 46[2.96 1.00]’ 

• y5 = -94[2.98 1.00]’ 

• y6 = -190[2.99 1.00]’ 

• The iteration is converging on a scalar multiple of [3 1]’, which is 
the correct dominant eigenvector. 

 

 

 

Rayleigh Quotient 

• Note that once we have the eigenvector, the 

corresponding eigenvalue can be obtained from the 

Rayleigh quotient: 

   dot(Ax,x)/dot(x,x) 

 where dot(a,b) is the scalar product of vectors a and b 

defined by: 

   dot(a,b) = a1b1+a2b2+…+anbn 

• So for our example,  1 = -2. 
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Scaling 

• The  1
k can cause problems as it may become very large 

or small as the iteration progresses. 

• To avoid this problem we scale the iteration formula: 

    yk+1 = A(yk /rk+1) 

 where rk+1 is the component of Ayk with largest absolute 

value. 

Example with Scaling 
• Let A = [2 -12; 1 -5] and y0=[1 1]’ 

• Ay0 = [-10 -4]’ so r1=-10 and y1=[1.00 0.40]’. 

• Ay1 = [-2.8 -1.0]’ so r2=-2.8 and y2=[1.0 0.3571]’. 

• Ay2 = [-2.2857 -0.7857]’ so r3=-2.2857 and y3=[1.0 0.3437]’. 

• Ay3 = [-2.1250 -0.7187]’ so r4=-2.1250 and y4=[1.0 0.3382]’. 

• Ay4 = [-2.0588 -0.6912]’ so r5=-2.0588 and y5=[1.0 0.3357]’. 

• r is converging to the correct eigenvalue -2. 

• At step k+1, the scaling factor rk+1 is the component with 

largest absolute value is Ayk. 

• When k is sufficiently large Ayk =  1yk. 

• The component with largest absolute value in  1yk is  1 (since 

yk was scaled in the previous step to have largest component 

1). 

• Hence, rk+1 ->  1 as k -> . 
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Convergence 

• The Power Method relies on us being able to ignore terms of the 

form ( j/  1)
k when k is large enough. 

• Thus, the convergence of the Power Method depends on |  2|/|  1|. 

• If |  2|/|  1|=1 the method will not converge. 

• If |  2|/|  1| is close to 1 the method will converge slowly. 

The QR Algorithm 

• The QR algorithm for finding eigenvalues is based on 

the QR factorisation we learnt in the least squares part 

of the course 

• Recall the QR factorization represents a matrix A as: 

   A = QR 

 where Q is a matrix whose columns are orthonormal, 

and R is an upper triangular matrix. 

• Recall that QtQ = I and Q-1=Qt. 
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Similar Matrices 

• Two matrices A and B  are said  to be similar it is possible to relate 

them as 

B=T-1AT  TBT-1=A 

• Here T is any non singular matrix, which is the similarity 

transform matrix 

• Theorem: Similar matrices have the same eigenvalues and their 

eigen-vectors are related via the similarity transform.  

• Proof. Let (x,) be an eigen-pair for A. Then  Ax= x.  

Let y=T-1x  and x=Ty 

Then Ax= x.        

Premultiply by T-1  to get   T-1ATT-1 x =  T-1x 

So    By= y 

 

EVD 

• EVD is a similarity transform that takes A to a diagonal 

matrix using a matrix of eigenvectors. 

• Eigenvalue decomposition requires solving of a general 

polynomial equation.  

– Even if matrix has real entries eigenvalues can be complex 

– So can eigenvectors 

• Eigenvectors provide a set of basis vectors in which the 

matrix becomes diagonal 
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QR Algorithm without Shifts 

A0 = A 

for k=1,2,… 

 QkRk = Ak 

 Ak+1 = RkQk 

end 

Since: 

    Ak+1 = RkQk = Qk
-1AkQk 

then Ak and Ak+1 are 

similar and so have the 

same eigenvalues. 

Ak+1 tends to an upper triangular matrix with the 

same eigenvalues as A. These eigenvalues lie 

along the main diagonal of Ak+1. 

MATLAB Code for QR Algorithm 

• Let A be an n× n matrix 

 n = size(A,1); 

 I = eye(n,n); 

 s = A(n,n); [Q,R] = qr(A-s*I); A = R*Q+s*I 

• Use the up arrow key in MATLAB to iterate or put a loop 

round the last line. 
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Deflation 

• The eigenvalue at A(n,n) will converge first.  

• Then we set s=A(n-1,n-1) and continue the iteration until 
the eigenvalue at A(n-1,n-1) converges. 

• Then set s=A(n-2,n-2) and continue the iteration until the 
eigenvalue at A(n-2,n-2) converges, and so on. 

• This process is called deflation. 

The SVD 

• Definition: Every matrix A of dimensions m  n (m ≥ n) 

can be decomposed as 

A = U  Vt  

• where 

–  U has dimension m  m and UtU = I, 

–    has dimension m  n,  

the only nonzeros are on the main diagonal, and they are 
nonnegative real numbers 1 ¸  2 ¸ … ¸ n, 

–  V has dimension n  n and Vt V = I. 
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Relation with the Eigenvalue Decomposition 

• Let A = U  Vt . Then  

At A = (UVt)t UVt 

= Vt Ut UVt=V2 Vt 

• This tells us that the singular value decomposition of A  is 

related to the Eigenvalue decomposition of At A 

• Recall eigen value decomposition A= (X  Xt) 

– So V  which contains the right singular vectors of A  has the 

right eigenvectors of At A 

 2 are the eigenvalues of At A 

– The singular values i of A are the square roots of the 

eigenvalues of At A. 

Relation with the Eigenvalue Decomposition (2) 

• Let A = U  V . Then  

A At = (UVt) (UVt)t 

= UVtV Ut =U2 Ut 

• This tells us that the singular value decomposition of A  is 

related to the Eigenvalue decomposition of AA
t
  

• Recall eigen value decomposition A= (X  Xt) 

– So U  contains the the left singular vectors of A, which are also 

the left eigenvectors of  AAt 

 2 are the eigenvalues of AAt  and  the singular values i of A 

are the square roots of the eigenvalues of  AAt 
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Computing the SVD 

• The algorithm is a variant on algorithms for computing 

eigendecompositions. 

–  rather complicated, so better to use a high-quality existing code 

rather than writing your own. 

• In Matlab: [U,S,V] = svd(A) 

• The cost is O(mn2) when m≥ n. The constant is of order 

10. 
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Uses of the SVD  

• Recall to solve least squares problems we could look at 

the normal equations (A*Ax=A*b) 

– So, SVD is closely related to solution of least-squares 

– Used for solving ill conditioned least-squares 

• Used for creating low-rank approximations 

• Both applications are related 

SVD and reduced rank approximation 

 

 

 

 

 

 

 

 

• We can truncate r at any value and achieve “reduced-
rank” approximation to the matrix 

• For ordered signular values, this gives the “best reduced 
rank approximation” 
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SVD and pseudo inverse 

 

Well posed problems 
• Hadamard postulated that for a problem to be “well posed” 

1. Solution must exist 

2. It must be unique 

3. Small changes to input data should cause small changes to solution 

• Many problems in science and computer vision result in “ill-

posed” problems. 

– Numerically it is common to have condition 3 violated. 

– Recall from the SVD 

 

If the σ are close to zero small changes in the “data” vector b cause 

big changes in x. 

• Converting ill-posed problem to well-posed one is called 

regularization. 
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SVD and Regularization 

• Pseudoinverse provides one means of regularization 

•  Another is to solve (A+εI)x=b 

• Solution of the regular problem  

requires minimizing of ||Ax-b||2 

• Solving this modified problemcorresponds to minimizing 

    ||Ax-b||2 + ε||x||2 

• Philosophy – pay a “penalty” of O(ε) to ensure solution 

does not blow up. 

• In practice we may know that the data has an uncertainty 

of a certain magnitude … so it makes sense to optimize 

with this constraint. 

• Ill-posed problems are also called “ill-conditioned” 

SVD and Pseudo-Inverse 

 


