Outline

Matrix Decompositions summary
Updates

Iterative methods for linear systems

— Why?

Matrix splittings and fixed-point schemes
— SOR, Jacobi, Gauss Seidel, etc.

Krylov Methods
— Conjugate Gradient, GMRES

Updating Factorizations

Suppose we have LU decomposition of A and we want to
solve (A-uvt)x=b
Solve equation without recomputing LU of new matrix
Solve Az=u, and Ay=b, sowe have Alu and Alb
We can formally write
A1(A-uvx=Alb (I-zvh)x=y
Let vix=a. (scalar, which depends on x).
X-zo=y or VX —Viza=vly
or oa-—Viza=vly a = Vviy/(1-viz)
S0 x=y+az
Cost is O(n?)

Sherman Morrison Woodbury Formula

« Assumes Alis already known.
(A-UVH)T=A1T+AUI-VTAIU)VTA!
» Here U and V are nxr and rxn matrices, and this is a rank

I update

« So cost of computing the inverse is O(rn?)

Decomposition

Cost

Use

LU

QR

rank-revealing QR

n’/3

mn? — 1/3n3

mn? —1/3n3

e solving linear systems

e computing determinants

e solving well-conditioned linear
least squares problems

e representing the range or null-
space of a matrix

e solving ill-conditioned linear least
squares problems

e representing the range or null-
space of a matrix

Decomposition Cost Use

SVD O(mn?)
e solving ill-conditioned linear least
squares problems

e solving discretizations of ill-
posed problems

e representing the range or null-
space of a matrix

eigendecomposition | O(n?)
e determining eigenvalues or eigen-
vectors of a matrix

e determining invariant subspaces

e determining stability of a control
system

e determining convergence

BLAS, LAPACK

Basic Linear Algebra Subroutines
Linear Algebra Package
Routines for single core, cache-efficient, linear algebra

BLAS — focuses on operations

— Level 1-0(n) SAXPY, DAXPY, SNORM, ZNORM, etc
— Level 2 - 0(n?) SGEMV, etc.

— Level 3-0(n%) SGEMM etc

LAPACK on decompositions and solutions

— SGETRF, SGESV, SGBSV ...

Installers which tune to your machine by solving test
problems available

Multicore versions --- PLASMA, MKL
JAVA. C wranpers’

Basic Costs

Memory --- O(n?)

Computation --- O(n3)

Given 24 GB of RAM on a high end workstation,
— One double takes 8 bytes,

— Memory available = 24 x 10243 = 3 x 230doubles

So upper bound on the size of a problem is 3 x 230
— largest matrix that can be fit in RAM 1.7 x 215~ 50000
— In practice about 1/2 that.

But we routinely may need to solve larger problems
Solutions:

— parallel processing; out-of-core-algorithms;

— Look for structure in the matrices

Matrices with structure

 Sparse matrix is one in which most elements are zero.

— If storage space is more important than access speed, it may be
preferable to store a sparse matrix as a list of (index, value) pairs.

— For a given sparsity structure it may be possible to define a fast
matrix-vector product/linear system algorithm

» Kronecker structure --- matrix entries created via tensor

products ; [1 5 } . [1 5 3]
= ; U3 = = .
0 -1 A~ 4 5 6 e
A® B is

2 4 6

6 8 10 12
0 -1 -2 -3
0 -4 -5 —6

o =
S oo
w

4x6

Fast matrix vector products via structure

Fourier, Toeplitz, Circulant ...

- - N-1
 Fourier entries are created 2 2 rikn/ N
via raising primitive roots =« 9] €
of unity to power kn n=0

Toeplitz, Hankel, Vandermonde, Circulant etc. are
matrices created from displacing entries in a vector

Fast multipole methods

N
s(x;) = Zaﬂi’(-‘{f —xi). s = [Dyldas)
i=1

Methods do not_need to store the matrix entries

Iterative Methods

» Take home message
— Iterative methods often require matrix vector products
— Can be written using special purpose algorithms
— Some methods can be guaranteed to converge in N steps
— With good guess and clever algorithms may converge much faster

References

C.T. Kelley, “Iterative methods for Linear and Nonlinear
Equations, SIAM, 1995)

J. Shewchuck, “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”

» (downloadable from http://immww-2.cs.cmu.edu/~jrs/jrspapers.html)

“Templates for the solution of linear systems: Building

Blocks and Iterative Methods,” Barrett et al, SIAM
(downloadable at http://immww.netlib.org/linalg/html_templates/Templates.html)

Yousef Saad has two good books online
NumericalMethods for Large Eigenvalue Problems

Iterative methods for sparse linear systems.
(downloadable at http://www-users.cs.umn.edu/~saad/books.html)

Iterative Methods: Notation

AX =Db
Ais a nonsingular N x N matrix, x,b in RN
Ax can be calculated using a fast algorithm
x* is the solution to be found.

Definitions
Norm of 4
||| = max |[Az]|
[|=]|=1

Condition number of A

x(4) = [|Al]||A7Y]
Residual

r=0b— Az

Error

Fixed point iteration

In fixed point iteration we write x=MXx

If M is a contraction (||M|| < 1) then following converges
— Start with guess X,

— Generate successive estimates x,=M X, ,

How to write our equation as a fixed point scheme?

Ax=Ix + (A—Dx =b

So, I x=(I-A)x +b
(Richardson iteration) Xes1 = (I-A)X, +b
For convergence we require [|I-A|| <1

Iteration Matrix M here is ||I-A||

Classical fixed point methods

Write A=A +A,
Then iteration becomes X, = A; (b — A%,)
— For convergence ||A; 1A < 1
— A, should be easy to compute
— In addition the FMM should be used to compute A,x,
Jacobi iteration A,=D A,=L+U
— A;tis easy to compute (1/ entries along diagonal)
— This is easy to compute with the FMM
— Atelement level (wern)i = azt [bi— z%m)j)
g

Other classical iterations (Gauss-Seidel, SOR).

Krylov methods

Different class of methods
Do not involve an iteration matrix

Motivation: Say in functional space we are at a point X,
and we want to reach the solution x*

Can do it by taking steps along some directions
Method of steepest descent

Define function f(x)
So minimum of f(x) is attained at V f(x)=0

Conjugate Gradient

Definition: Krylov subspace Ki = span(ro, Arg, ..., A* 'ry)
Definition: Energy or A-norm of a vector ||x||,=(xt Ax)?2

Idea of conjugate gradient method

— Generate Krylov subspace directions, and take a step that
minimizes the A norm of the residual along this direction

Let search direction be at step k+1 be d,,,
We require f(X,+ 4,1 di,q) 1S minimized along direction
Conjugacy property d,.,,AK*=0

Convergence of CG

If there are k distinct eigenvalues of A, then CG converges

in at most K iterations to the exact solution (in exact

arithmetic)
Usually we go to ||b—Ax|, < 7]|b||,
. = 2nlla <2 [Y222l = aul

Converges_quiékly

k(A) —1\"
lealla < (2057) llolla where () = Aoz /Amin

Non symmetric matrices

Can’t apply CG to nonsymmetric matrices

One simple solution — CGNR j
— convert system to a symmetric system

A'Ax=A'b

However we will need two matrix vector multiplies per

iteration

Also, if A is poorly conditioned then A'A is even more
poorly conditioned (condition number is squared)

Method of choice is GMRES
Blackbox implementation in Matlab

GMRES

Instead of requiring minimization along conjugate
direction, minimize residual in a subspace
Require x to minimize ||b—A4x||, VX inx, + KX
Construct basis ~ w(= Avti)

fork=1,...,:
wiil = i) = .[wlf"]'1 UU'}:-,UEJ"]'

end
pli+1) — wtf}f”wti}”
Then require that each 20 = 2™ 4 g oM + ... 4 ol
satisfies minimum |15 — Azl
Can be done by simple minimization
Implemented as a black-box in Matlab

10

