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– SOR, Jacobi, Gauss Seidel, etc. 

• Krylov Methods 

– Conjugate Gradient, GMRES 

Updating Factorizations 

• Suppose we have LU decomposition of A and we want to 

solve  (A-uvt)x=b 

• Solve equation without recomputing LU of new matrix 

• Solve Az=u, and  Ay=b , so we have A-1u   and  A-1b 

• We can formally write 

A-1(A-uvt)x= A-1b   (I-zvt)x=y 

• Let vtx= α.  (scalar, which depends on x).  

x- zα=y   or   vtx – vtzα = vty    

or     α – vtzα = vty   α = vty/(1 – vtz) 

• So    x= y + α z 

• Cost is O(n2) 



2 

Sherman Morrison Woodbury Formula 

• Assumes A−1 is already known.  

  (A − UVT )−1 = A−1 + A−1U(I − VT A−1U)−1VT A−1 

• Here U and V are n×r and r×n matrices, and this is a rank  

r update 

• So cost of computing the inverse is O(rn2) 
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BLAS, LAPACK  
• Basic Linear Algebra Subroutines 

• Linear Algebra Package 

• Routines for single core, cache-efficient, linear algebra 

• BLAS – focuses on operations 

– Level 1 – O(n) SAXPY, DAXPY, SNORM, ZNORM, etc 

– Level 2 – O(n2) SGEMV, etc. 

– Level 3 – O(n3) SGEMM etc 

• LAPACK on decompositions and solutions 

– SGETRF, SGESV, SGBSV … 

• Installers which tune to your machine by solving test 

problems available 

• Multicore versions --- PLASMA, MKL 

• JAVA, C wrappers` 
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Basic Costs 

• Memory --- O(n2) 

• Computation --- O(n3) 

• Given 24 GB of RAM on a high end workstation,  

– One double takes 8 bytes,  

– Memory available = 24 × 10243 = 3 × 230 doubles 

• So upper bound on the size of a problem is 3 × 230 

– largest matrix that can be fit in RAM 1.7 × 215 ~ 50000 

– In practice about 1/2 that. 

• But we routinely may need to solve larger problems 

• Solutions:  

– parallel processing; out-of-core-algorithms; 

– Look for structure in the matrices 

 

 

Matrices with structure 

• Sparse matrix is one in which most elements are zero.  

– If storage space is more important than access speed, it may be 

preferable to store a sparse matrix as a list of (index, value) pairs. 

– For a given sparsity structure it may be possible to define a fast 

matrix-vector product/linear system algorithm 

• Kronecker structure --- matrix entries created via tensor 

products 
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Fast matrix vector products via structure 

• Fourier, Toeplitz, Circulant … 

• Fourier entries are created 

via raising primitive roots 

of unity to power kn  

• Toeplitz, Hankel, Vandermonde, Circulant etc. are 

matrices created from displacing entries in a vector 

• Fast multipole methods 

 

 

• Methods do not need to store the matrix entries 

 

f[n]  e -2 p i k n / N  

 

= S 
    n=0 

N-1 

Iterative Methods 
• Take home message 

– Iterative methods often require matrix vector products 

– Can be written using special purpose algorithms  

– Some methods can be guaranteed to converge in N steps 

– With good guess and clever algorithms may converge much faster 
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Iterative Methods: Notation 

Ax =b  

• A is a nonsingular N × N matrix, x,b  in RN 

• Ax  can be calculated using a fast algorithm 

• x* is the solution to be found.  

• Definitions 
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Fixed point iteration 

• In fixed point iteration we write x=Mx 

• If M  is a contraction (||M|| < 1) then following converges 

– Start with guess x0  

– Generate successive estimates xk=M xk-1 

• How to write our equation as a fixed point scheme? 

Ax=Ix + (A−I)x =b 

• So,    I x = (I−A)x +b 

• (Richardson iteration)  xk+1 = (I−A)xk +b 

• For convergence we require    ||I−A|| < 1 

• Iteration Matrix M  here is ||I−A|| 

 

Classical fixed point methods 

• Write A=A1+A2  

• Then iteration becomes   xk+1 = A1
-1(b − A2xk ) 

– For convergence ||A1
-1A2|| < 1 

– A1
-1 should be easy to compute  

– In addition the FMM should  be used to compute A2xk  

• Jacobi iteration   A1=D   A2=L+U 

– A1
-1 is easy to compute (1/ entries along diagonal) 

– This is easy to compute with the FMM 

–  At element level 

 

• Other classical iterations (Gauss-Seidel, SOR). 
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Krylov methods 

• Different class of methods 

• Do not involve an iteration matrix 

• Motivation: Say in functional space we are at a point x0 

and we want to reach the solution x* 

• Can do it by taking steps along some directions  

• Method of steepest descent 

• Define function f(x) 

• So minimum of f(x)  is attained at r f(x)=0 

 

 

Conjugate Gradient 

• Definition: Krylov subspace 

• Definition: Energy or A-norm of a vector ||x||A=(xt Ax)1/2 

• Idea of conjugate gradient method 

– Generate Krylov subspace directions, and take a step that 

minimizes the A norm of the residual along this direction 

• Let search direction be at step k+1 be dk+1  

• We require f(xk+k+1 dk+1) is minimized along direction 

• Conjugacy property dk+1AK k=0 
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Convergence of CG 

• If there are k  distinct eigenvalues of A, then CG converges 

in at most k iterations to the exact solution (in exact 

arithmetic) 

• Usually we go to ||b−Axk||2 · ||b||2 

 

 

 

• Converges quickly 

 

Non symmetric matrices 

• Can’t apply CG to nonsymmetric matrices 

• One simple solution – CGNR j 

– convert system to a symmetric system 

AtAx=Atb 

• However we will need two matrix vector multiplies per 

iteration 

• Also, if A  is poorly conditioned then AtA is even more 

poorly conditioned (condition number is squared) 

• Method of choice is GMRES  

• Blackbox implementation in Matlab 
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GMRES 

• Instead of requiring minimization along conjugate 

direction, minimize residual in a subspace 

• Krylov subspace 

• Require x  to minimize ||b−Ax||2 8 x in x0 + K k 

• Construct basis 

 

 

 

• Then require that each 

satisfies minimum 

• Can be done by simple minimization 

• Implemented as a black-box in Matlab 


