Outline

- Matrix Decompositions summary
- Updates
- Iterative methods for linear systems Why?
- Matrix splittings and fixed-point schemes
 SOR, Jacobi, Gauss Seidel, etc.
- Krylov Methods
 - Conjugate Gradient, GMRES

Updating Factorizations

- Suppose we have LU decomposition of A and we want to solve (A-uv^t)x=b
- Solve equation without recomputing LU of new matrix
- Solve Az=u, and Ay=b, so we have A⁻¹u and A⁻¹b
- We can formally write

$$A^{-1}(A-uv^{t})x = A^{-1}b \qquad (I-zv^{t})x = y$$

• Let $v^t x = \alpha$. (scalar, which depends on x).

$$\begin{array}{rll} & x\text{-} z\alpha\text{=}y & \text{or} & v^tx-v^tz\alpha=v^ty\\ \text{or} & \alpha-v^tz\alpha=v^ty & \alpha=v^ty/(1-v^tz) \end{array}$$

- So $x=y+\alpha z$
- Cost is $O(n^2)$

Sherman Morrison Woodbury Formula

• Assumes A⁻¹ is already known.

 $(A - UV^T)^{-1} = A^{-1} + A^{-1}U(I - V^T A^{-1}U)^{-1}V^T A^{-1}$

- Here U and V are $n \times r$ and $r \times n$ matrices, and this is a rank r update
- So cost of computing the inverse is $O(rn^2)$

Decomposition	Cost	Use
LU	n ³ /3	solving linear systemscomputing determinants
QR	$mn^2 - 1/3n^3$	 solving well-conditioned linear least squares problems representing the range or null- space of a matrix
rank-revealing QR	$mn^2 - 1/3n^3$	 solving ill-conditioned linear least squares problems representing the range or null- space of a matrix

Decomposition	Cost	Use
SVD	$O(mn^2)$	
		 solving ill-conditioned linear least squares problems
		 solving discretizations of ill- posed problems
		 representing the range or null- space of a matrix
eigendecomposition	$O(n^3)$	
5		 determining eigenvalues or eigen- vectors of a matrix
		 determining invariant subspaces
		 determining stability of a control system
		 determining convergence

BLAS, LAPACK

- Basic Linear Algebra Subroutines
- Linear Algebra Package
- Routines for single core, cache-efficient, linear algebra
- BLAS focuses on operations
 - Level 1-O(n) SAXPY, DAXPY, SNORM, ZNORM, etc
 - Level $2 O(n^2)$ SGEMV, etc.
 - Level $3 O(n^3)$ SGEMM etc
- LAPACK on decompositions and solutions - SGETRF, SGESV, SGBSV ...
- Installers which tune to your machine by solving test problems available
- Multicore versions --- PLASMA, MKL
- JAVA, C wrappers`

Basic Costs

- Memory --- O(n²)
- Computation --- O(n³)
- Given 24 GB of RAM on a high end workstation,
 - One double takes 8 bytes,
 - Memory available = $24 \times 1024^3 = 3 \times 2^{30}$ doubles
- So upper bound on the size of a problem is 3×2^{30}
 - largest matrix that can be fit in RAM 1.7 \times 2^{15} ~ 50000
 - In practice about 1/2 that.
- But we routinely may need to solve larger problems
- Solutions:
 - parallel processing; out-of-core-algorithms;
 - Look for structure in the matrices

Matrices with structure

- Sparse matrix is one in which most elements are zero.
 - If storage space is more important than access speed, it may be preferable to store a sparse matrix as a list of (index, value) pairs.
 - For a given sparsity structure it may be possible to define a fast matrix-vector product/linear system algorithm
- Kronecker structure --- matrix entries created via tensor products

$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}_{2 \times 2} \qquad B_{2 \times 3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}_{2 \times 3}$$
$$A \otimes B \text{ is}$$
$$A \otimes B = \begin{bmatrix} 1 & 2 & 3 & 2 & 4 & 6 \\ 4 & 5 & 6 & 8 & 10 & 12 \\ 0 & 0 & 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & -4 & -5 & -6 \end{bmatrix}_{4 \times 6}.$$

Fast matrix vector products via structure

- Fourier, Toeplitz, Circulant ...
- Fourier entries are created via raising primitive roots of unity to power kn $= \sum_{n=0}^{N-1} \phi[n] e^{-2\pi i k n / N}$
- Toeplitz, Hankel, Vandermonde, Circulant etc. are matrices created from displacing entries in a vector
- Fast multipole methods

$$s(x_j) = \sum_{i=1}^N \alpha_i \phi(x_j - x_i), \quad \{s_j\} = [\Phi_{ji}]\{\alpha_i\}.$$

• Methods do not need to store the matrix entries

Iterative Methods

- Take home message
 - Iterative methods often require matrix vector products
 - Can be written using special purpose algorithms
 - Some methods can be guaranteed to converge in N steps
 - With good guess and clever algorithms may converge much faster

References

- C.T. Kelley, "Iterative methods for Linear and Nonlinear Equations, SIAM, 1995)
- J. Shewchuck, "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"
- (downloadable from http://www-2.cs.cmu.edu/~jrs/jrspapers.html)
- "Templates for the solution of linear systems: Building Blocks and Iterative Methods," Barrett et al, SIAM (downloadable at http://www.netlib.org/linalg/html_templates/Templates.html)
- Yousef Saad has two good books online *NumericalMethods for Large Eigenvalue Problems Iterative methods for sparse linear systems*. (downloadable at http://www-users.cs.umn.edu/~saad/books.html)

Iterative Methods: Notation

Ax = b

- *A* is a nonsingular $N \times N$ matrix, *x*,*b* in \mathbb{R}^N
- Ax can be calculated using a fast algorithm
- x^* is the solution to be found.

Cor

Res

 Err

• Definitions

```
Norm of A
```

$$||A|| = \max_{||x||=1} ||Ax$$

addition number of A
idual
or
$$\kappa(A) = ||A||||A^{-1}$$
$$r = b - Ax$$
$$e = x - x^*$$

Fixed point iteration

- In fixed point iteration we write x=Mx
- If *M* is a contraction (||M|| < 1) then following converges
 - Start with guess x_0
 - Generate successive estimates $x_k = M x_{k-1}$
- How to write our equation as a fixed point scheme?

$$Ax=Ix + (A-I)x = b$$

- So, I x = (I A)x + b
- (Richardson iteration) $x_{k+1} = (I-A)x_k + b$
- For convergence we require ||I-A|| < 1
- Iteration Matrix *M* here is //*I*-*A*//

Classical fixed point methods

- Write $A = A_1 + A_2$
- Then iteration becomes $x_{k+1} = A_1^{-1}(b A_2 x_k)$
 - For convergence $||A_1^{-1}A_2|| < 1$
 - $-A_{I}^{-1}$ should be easy to compute
 - In addition the FMM should be used to compute $A_2 x_k$
- Jacobi iteration $A_1 = D$ $A_2 = L + U$

\

- $-A_{I}^{-1}$ is easy to compute (1/ entries along diagonal)
- This is easy to compute with the FMM

- At element level
$$(x_{k+1})_i = a_{ii}^{-1} \left(b_i - \sum_{j \neq i} a_{ij} (x_k)_j \right)$$

• Other classical iterations (Gauss-Seidel, SOR).

Krylov methods

- Different class of methods
- Do not involve an iteration matrix
- Motivation: Say in functional space we are at a point x₀ and we want to reach the solution x^{*}
- Can do it by taking steps along some directions
- Method of steepest descent
- Define function *f*(*x*)
- So minimum of f(x) is attained at $\nabla f(x) = 0$

Conjugate Gradient

- Definition: Krylov subspace $\mathcal{K}_k = \operatorname{span}(r_0, Ar_0, \dots, A^{k-1}r_0)$
- Definition: Energy or A-norm of a vector $||x||_A = (x^t A x)^{1/2}$
- Idea of conjugate gradient method
 - Generate Krylov subspace directions, and take a step that minimizes the *A* norm of the residual along this direction
- Let search direction be at step k+1 be d_{k+1}
- We require $f(x_k + \alpha_{k+1} d_{k+1})$ is minimized along direction
- Conjugacy property $d_{k+1}AK^k=0$

Convergence of CG

- If there are k distinct eigenvalues of A, then CG converges in at most k iterations to the exact solution (in exact arithmetic)
- Usually we go to $||b-Ax_k||_2 \le \eta ||b||_2$

$$||x_* - x_m||_A \le 2 \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right]^m ||x_* - x_0||_A.$$

• Converges quickly

$$||e_k||_A \le \left(\frac{\kappa(A) - 1}{\kappa(A) + 1}\right)^k ||e_0||_A \quad \text{where} \quad \kappa(A) = \lambda_{max} / \lambda_{min}$$

Non symmetric matrices

- Can't apply CG to nonsymmetric matrices
- One simple solution CGNR j
 - convert system to a symmetric system

 $A^{t}Ax = A^{t}b$

- However we will need two matrix vector multiplies per iteration
- Also, if *A* is poorly conditioned then *A*^{*t*}*A* is even more poorly conditioned (condition number is squared)
- Method of choice is GMRES
- Blackbox implementation in Matlab

GMRES

- Instead of requiring minimization along conjugate direction, minimize residual in a subspace
- Krylov subspace $\mathcal{K}_k = \operatorname{span}(r_0, Ar_0, \dots, A^{k-1}r_0)$
- Require x to minimize $||b-Ax||_2 \forall x \text{ in } x_0 + \mathbf{K}^k$

• Construct basis

$$w^{(i)} = Av^{(i)}$$
for $k = 1, ..., i$

$$w^{(i)} = w^{(i)} - (w^{(i)}, v^{(k)})v^{(k)}$$
end

$$v^{(i+1)} = w^{(i)} / ||w^{(i)}||$$
• Then require that each $x^{(i)} = x^{(0)} + y_1v^{(1)} + \dots + y_iv^{(i)}$,
satisfies minimum $||b - Ax^{(i)}||$

- Can be done by simple minimization
- Implemented as a black-box in Matlab