Ordinary differential equations

Mathematical modeling involves posing models and then
solving these models numerically or analytically

ODEs represent a powerful method of modeling
— Especially if things depend on rates of change

Rate of change of distance is velocity  fide

v=dx/dt o(t) = | a7
Knowing the velocity as a function of t we can integrate
using numerical quadrature

Rate of change of velocity is acceleration

a=dv/dt =d?x/dt?
Given initial conditions (v(0)=0, x(0)=0) find the
location x(t) at time t given that the object falls with a
constant acceleration of 10 m/s?

Solution by simple integration
/dv=/10dt
v=10t+c,
/dx/dt dt= /10t dt
x=10t%/2 + c;t +c,
Use initial conditions
v(0)=0so c, is zero
x(0)=0so ¢, is zero
Final solution x=>5t2

Could handle more complex functions of t under the

integral @
T o) = [ f(rar
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What if simple integration would not work?

Example: Let the velocity be a function of x and t
dx/dt=f(x,t) o(t) = /t Fla(r), r)dr

: : 0
Cannot be simply integratea
This is the typical type of problem we need to solve in
ODEs
This is nonlinear because solution x depends on itself

The linear case could be solved using numerical
quadrature

Standard form: Initial Value Problems for
ODEs

We have an “ordinary” differential equation
Standard form
dy
T =fy)
— Subject to y(a) =y,
Goal provide values of y in an interval [a,b]

For future assume

— Function f is given as a blackbox function which we can call
with specified numerical arguments

— y and f may be vector-valued
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Ordinary vs Partial

« ODE

— Everything is function of a single independent variable
 PDE

— There are several (more than one) independent variables
» ODEs are characterized by order and degree

Order and Degree

Differential equations are often classified with respect to order. The order of a

differential equation is the order of the highest order derivative present in the equation.

Example 1

da? dz dar?

d?y dy\? d?y )
—— e =) =y— +e* has order 3.

The degree of a differential equation is the power of the highest order derivative in

the equation. In previous example the degree is 1.

Example 2

da? dar

9 43
d=y dy . e o
+ —— =sinx is of order 2 and degree 3.
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Big picture: ODE for a function y(x)

» knowledge of a relation of its derivatives, the ODE,
which is given valid in a specified range of values of x

— y is assumed differentiable and continuous (at least so far that
the equation makes sense)

» Tool: Taylor series to express f(x) over polynomial basis
— Either solve for values of f(x) at specified locations
— Or, determine coefficients to polynomial approximation

« Will also need values of the function itself, and/or of its
derivatives at specified locations (side conditions)

— Initial value problem. Values of function and the derivatives
needed are specified at the beginning of the interval.

— Boundary value problem. Values are specified at the ends of
the interval

Standard form

» standard form,

y'=1(t;y)

y(to) = Yo
swhere the function y has m components,
+y’means the derivative with respect to t, and
*y, IS a given vector of initial conditions (numbers).
*Writing this component-by-component yields

Yo =t Yay- ym)

Y =t Yy Yimy)
with y(ty), -, Y (to) given initial conditions
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Writing a 2" order system in standard form
u’=g( u u’)
u(0) = u,
u’(0) = v,
 where u, and v, are given.
* Lety, =uandy,=u". Then, in standard form:

Y, '=g(t,y1,Y>)
Y1 =Y,
y1(0)=Uy Y,(0)=v,

A modeling exercise: predator prey problems

 Eco-system (island) that contains rabbits and foxes

« Island has plenty of food for rabbits

* Rabbits reproduce like crazy and would fill-up the island
+ Foxes eat rabbits

» Letr(t) representthe number of rabbits and f (t) the
number of foxes.

« Model the number of rabbits and foxes on the island and
decide if it will reach an equilibrium



Rabbit and fox population

Rabbit population will grow at a certain rate

— a is the natural growth rate of rabbits in the absence of predation,

encounters a fox.

— b is the death rate per encounter of rabbits due to predation,

» Fox population dies off if they cannot eat rabbits
— cis the natural death rate of foxes in the absence of food (rabbits),

» Foxes reproduce if they have food

— e is the efficiency of turning predated rabbits into foxes.

Initial conditions
Volterra equations

dR/dt = aR - bRF
dF/dt = ebRF — cF

Standard form
» Volterra’s model
dR/dt=2R - aRF
dF/dt= aRF -F

» Another example (Kep|eﬁ The vector y(t) has four components,
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B(t) = —o(t)/r(t)? ult) =
where

r(t) = Vul(t)? 4+ v(t)?
function ydot = twobody(t,y) y(t)::

r = sqrt(y(1)"2 + y(2)°2);
ydot = [y(3); y(4); -y(1)/r"3; -y(2)/r"3];

R(0)=r, and F(0)=f,
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Rabbits will die as they are eaten by foxes. Let the rabbit die if it

The differential equation is

a(t)
(1)
)

3
3
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Taylor Series

» Letf(x) be areal valued function with n derivatives in
a < x <b.Then

1
f) = fl@) +f' @& —a) + 5 f"(@)x - a)? + -
1
(n—1)!
|x —al”

Rn < sup |V (y)|
nl yelab)
This provides us the values of f at any point x in terms of its
values and that of its derivatives at a.

+ fO D (@)(x —a)* " + Ry

Solving differential equations: Euler’s method

« use Taylor series
* Euler’s method

yt+h) =y +hy'(t) +h%2  y(€)
for some point & in [t,<t+ h]
 Note that
y'(t) = f(ty ().
J March forward
y(h)=y, =y(0)+hy’ (0)
=Yo+hf(ty,Yo)
yn+1=yn+hfn
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Euler’s Method:First-order Taylor
ﬂ=x+y y(0)=1 y(x)=2e* —x -1

dx

d ,
d—i=y =f(x,y); Y% )=Y,

Straight line approximation

Yo
Xo h X4 h X, h X3
Euler’s Method Example
The initial condition is: y(O):l d_y —X+Yy
The step sizeis: Ah =0.02 dx

Loop using initial conditions and definition of the derivative

The derivative is calculated as: yi’ =X +VY.
The next y value is calculated: _ !
y Yiu =Y +ADhY;

Take the next step: X.,;, =X +Ah
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Euler’s Method Example

The results
BExact Error

X Yn Y'n hy', Solution

0 1.00000 | 1.00000 | 0.02000 | 1.00000 0.00000
0.02 1.02000 1.04000 | 0.02080 1.02040 | -0.00040
0.04 1.04080 1.08080 | 0.02162 1.04162 | -0.00082
0.06 1.06242 1.12242 0.02245 1.06367 | -0.00126
0.08 1.08486 1.16486 | 0.02330 1.08657 | -0.00171
0.1 1.10816 1.20816 | 0.02416 1.11034 | -0.00218
0.12 1.13232 1.25232 0.02505 1.13499 | -0.00267
0.14 1.15737 1.29737 0.02595 1.16055 -0.00318
0.16 1.18332 1.34332 0.02687 1.18702 | -0.00370
0.18 1.21019 1.39019 | 0.02780 1.21443 | -0.00425
0.2 1.23799 1.43799 | 0.02876 1.24281 | -0.00482

The trouble with this method is

Euler’s Method

— Lack of accuracy
— Small step size needed for accuracy

» How do we improve it?

* Euler’s equation was based on first order Taylor series

— Maybe use higher order Taylor series
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y(xn+1) - y(xn)
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Runge-Kutta Methods

The initial conditions are:

dy —
= f(x, yiX,)=Y
« (X)/) (o) 0

To derive method we use the Taylor series
expansion including 2" order terms

p YY) B ATy (X, Y,)
dx 21 dx?

Runge-Kutta Methods

Expand the derivatives:

d’y d dy
3 :&[f(x,y)]: f + fy&: f+f,f

The Taylor series expansion becomes
1
yn+1 = yn +hf +h2|:§(fx + fyf ):|

Have expressed second derivative in terms of 1
derivatives of f
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Runge-Kutta Methods

Look for a formula of the type

yn+1 - yn + akl + ka

k, =hf (x,,¥,)
k, =hf (x, +aAh, y, + Sk, )
* Goal is to find some intermediate points that allow

us to approximate the second derivative

Specification of o, B, @, and b provides the formula

Runge-Kutta Methods

Look at formula we want for Runge-Kutta
You = Y, +ahf +bhf (x, +ah,y, + ghf)

Perform a multivariate Taylor series expansion of
the function

f(x, +ahy,+phf)=f +ahf +phf f,
Expand, and group terms

Yo = Yo +ahf +bh(f +ahf, + hf f)
=y, +[a+b]hf +bah®f +bph*f f,
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Runge-Kutta Methods

Compare with the Taylor series

Your = Yo +[@a+b]hf +bah®f +bph*f 1,

Y. =Y. +hf +h2E(fx+ fyf)}

la+b]=1
4 Unknowns

1

2 3 Equations
1

2

Runge-Kutta Methods

The Taylor series coefficients (3 equations/4 unknowns)

[a+b]=1 ab=1, pAo=1

If you select “a” as

If you select “a” as
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Runge-Kutta Method (2" Order)

Example
Consider Exact Solution
d 1
_y — _y2 y =
dx 1+ X
The initial condition is: y(O) =1

The step size is: Ah=0.1

Use the coefficients a:% b:%, a=p£=1

Runge-Kutta Method (2" Order) Example

Ah=0.1
N
= f (%, v,
k, =hf (x, +h,y; +k)
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Runge-Kutta Method

Order) Example

» The values are similar to that of the Modified Euler

 also a second order method

(2nd

ky Estimate = Solution k2 Exact Error

X Yn Y'n hy'n Y*n+1 Y* ns1 Ny*'ne1)

0 1.00000 | -1.00000 | -0.10000 | 0.90000 | -0.81000 -0.08100 1.000000 | 0.000000
0.1 0.90950 | -0.82719 | -0.08272 | 0.82678 | -0.68357 -0.06836 0.909091 | -0.000409
0.2 0.83396 | -0.69549 | -0.06955 | 0.76441 | -0.58433 -0.05843 0.833333 | -0.000629
0.3 0.76997 | -0.59286 | -0.05929 | 0.71069 | -0.50507 -0.05051 0.769231 | -0.000740
0.4 0.71507 | -0.51133 | -0.05113 | 0.66394 | -0.44082 -0.04408 0.714286 | -0.000789
0.5 0.66747 | -0.44551 | -0.04455 | 0.62292 | -0.38802 -0.03880 0.666667 | -0.000801
0.6 0.62579 | -0.39161 | -0.03916 | 0.58663 | -0.34413 -0.03441 0.625000 | -0.000790
0.7 0.58900 | -0.34692 | -0.03469 | 0.55431 | -0.30726 -0.03073 0.588235 | -0.000768
0.8 0.55629 | -0.30946 | -0.03095 | 0.52535 | -0.27599 -0.02760 0.555556 | -0.000738
0.9 0.52702 | -0.27775 | -0.02778 | 0.49925 | -0.24925 -0.02492 0.526316 | -0.000705

1 0.50067 | -0.25067 | -0.02507 | 0.47560 | -0.22620 -0.02262 0.500000 | -0.000671

Runge-Kutta Methods

 Fourth order Runge-Kutta method

Ynr1 =Y F1/6(k +2k,+2ks+k,)

ki=hf(x,y)
k,=h(f(x+h/2, y+1/2 k,)
ks=h(f(x+h/2, y+1/2 k,)

Ky=h(f(x+h,y+k3))
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4th-order
Runge-Kutta Method

Volterra example

« Write a function in standard form

function f = rabfox(t,y)

% Computes y’ for the Volterra model.

% y(1) is the number of rabbits at time t.
% y(2) is the number of foxes at time t.
global alpha % interaction constant

t % a print statement, just so we can see how
fast

% the progress is, and what stepsize is being
used

£(1,1) = 2*xy(1) - alphaxy(1)*y(2);
£(2,1) = -y(2) + alpha*xy(1)*y(2);
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Study its solution for various values of encounter

% Run the rabbit-fox model for various values of
% the encounter parameter alpha, plotting each
% solution.

global alpha

for i=2:-1:0,

alpha = 107(-i)

[t,y] = oded5(‘rabfox',[0:.1:2], [20,10]);
plot(t,y(:,1),r t,y(;,2),'b");

legend('rabbits’,' foxes')

title(sprintf('alpha = %f',alpha));

pause

end

Stability

It turns out that explicit methods are not very stable

This means that the solution may oscillate if we use large
time steps

So, if we wish to integrate over a large interval, and we
need to take many small steps to achieve accuracy, many
function evaluations are needed.

Implicit methods are usually more stable
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