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Ordinary differential equations 
• Mathematical modeling involves posing models and then 

solving these models numerically or analytically 

• ODEs represent a powerful method of modeling 

– Especially if things depend on rates of change 

• Rate of change of distance is velocity 

v=dx/dt 

• Knowing the velocity as a function of  we can integrate 
using numerical quadrature 

• Rate of change of velocity is acceleration 

a=dv/dt =d2x/dt2 

• Given initial conditions (v(0)=0, x(0)=0) find the 
location x(t) at time t given that the object falls with a 
constant acceleration of 10 m/s2 

 

Solution by simple integration 

 s dv=s 10dt 

v  = 10 t + c1 

 s dx/dt dt=s 10t dt 

x=10t2/2 + c1t +c2 

• Use initial conditions 

• v(0)=0 so c1 is zero 

• x(0)=0 so c2 is zero 

• Final solution x=5t2 

• Could handle more complex functions of t  under the 

integral 



10/8/2013 

2 

What if simple integration would not work? 

• Example: Let the velocity be a function of x  and t 

• dx/dt=f(x,t) 

• Cannot be simply integrated 

• This is the typical type of problem we need to solve in 

ODEs 

• This is nonlinear because solution x  depends on itself 

• The linear case could be solved using numerical 

quadrature 

 

 

Standard form: Initial Value Problems for 

ODEs 
• We have an “ordinary” differential equation 

• Standard form 
𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦  

– Subject to 𝑦 𝑎 = 𝑦0 

• Goal provide values of y in an interval [a,b] 

• For future assume 

– Function f  is given as a blackbox function which we can call 

with specified numerical arguments 

– y and f may be vector-valued 
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Ordinary vs Partial 

• ODE  

– Everything is function of a single independent variable 

• PDE 

– There are several (more than one) independent variables 

• ODEs are characterized by order and degree 

Order and Degree 
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Big picture: ODE for a function y(x)  

• knowledge of a relation of its derivatives, the ODE, 

which is given valid in a specified range of values of x 

– y is assumed differentiable and continuous (at least so far that 

the equation makes sense) 

• Tool: Taylor series to express  f(x) over polynomial basis 

– Either solve for values of f(x)  at specified locations 

– Or, determine coefficients to polynomial approximation 

• Will also need values of the function itself, and/or of its 

derivatives at specified locations (side conditions) 

– Initial value problem. Values of function and the derivatives 

needed are specified at the beginning of the interval. 

– Boundary value problem. Values are specified at the ends of 

the interval 

Standard form 

• standard form,  

y’ = f(t; y) 

y(t0) = y0 

•where the function y has m components,  

•y’ means the derivative with respect to t, and  

•y0 is a given vector of initial conditions (numbers).  

•Writing this component-by-component yields 

y’(1) = f1(t, y(1)… y(m)) 

… 

y’(m) = fm(t, y(1)… y(m)) 

with y(1)(t0), …, y(m)(t0) given initial conditions 
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Writing a 2nd order system in standard form 

u’’ = g(t, u, u’) 

u(0) = u0 

u’(0) = v0 

• where u0 and v0 are given. 

• Let y1 = u and y2 = u’. Then, in standard form: 

y2’=g(t,y1,y2) 

y1
’=y2 

y1(0)=u0   y2(0)=v0 

A modeling exercise: predator prey problems 

• Eco-system (island) that contains rabbits and foxes 

• Island has plenty of food for rabbits 

• Rabbits reproduce like crazy and would fill-up the island 

• Foxes eat rabbits 

• Let r(t)   represent the number of rabbits and f (t)  the 

number of foxes. 

• Model the number of rabbits and foxes on the island and 

decide if it will reach an equilibrium  
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Rabbit and fox population 

• Rabbit population will grow at a certain rate 

– a is the natural growth rate of rabbits in the absence of predation,  

• Rabbits will die as they are eaten by foxes. Let the rabbit die if it 

encounters a fox.  

– b is the death rate per encounter of rabbits due to predation,  

• Fox population dies off if they cannot eat rabbits 

– c is the natural death rate of foxes in the absence of food (rabbits),  

• Foxes reproduce if they have food 

– e is the efficiency of turning predated rabbits into foxes.  

• Initial conditions   R(0)=r0 and F(0)=f0 

• Volterra equations 

dR/dt = aR - bRF 

dF/dt = ebRF – cF 

Standard form 
• Volterra’s model 

dR/dt = 2R -  RF 

dF/dt =   RF – F 

• Another example (Kepler) 

function ydot = twobody(t,y) 

r = sqrt(y(1)^2 + y(2)^2); 

ydot = [y(3); y(4); -y(1)/r^3; -y(2)/r^3]; 
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Taylor Series 

• Let f(x)  be a real valued function with n derivatives in 

𝑎 ≤ 𝑥 ≤ 𝑏. Then 

𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
1

2!
𝑓′′ 𝑎 𝑥 − 𝑎 2 +⋯

+
1

𝑛 − 1 !
𝑓 𝑛−1 𝑎 𝑥 − 𝑎 𝑛−1 + 𝑅𝑛 

𝑅𝑛 ≤
𝑥 − 𝑎 𝑛

𝑛!
sup

𝑦∈[𝑎,𝑏)
𝑓 𝑛−1 𝑦  

This provides us the values of f at any point x in terms of its 

values and that of its derivatives at a. 

 

Solving differential equations: Euler’s method 

• use Taylor series 

• Euler’s method 

y(t + h) = y(t) + hy’(t) + h2/2      y’’() 

for some point    in [t,· t + h] 

• Note that 

y’(t) = f(t,y(t)): 

 March forward 

y(h)=y1  =y(0)+hy’ (0)  

=y0+hf(t0,y0) 

yn+1=yn+hfn 
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yx
dx

dy
   10 y   12 x  xexy

Euler’s Method:First-order Taylor 

00 y)y(x     );y,x(fy
dx

dy


x0 x1 x2 x3 

y0 

h  h  h  

Straight line approximation 

Euler’s Method Example 

The initial condition is: 

The step size is: 

Loop using initial conditions and definition of the derivative 

The derivative is calculated as: 

 

The next y value is calculated: 

 

Take the next step: 

 

 

 

02.0h

  10 y
yx

dx

dy


iii yxy 

ii1i  yhyy 

hxx  i1i
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Euler’s Method Example 

The results 

Exact Error

xn yn y'n hy'n Solution

0 1.00000 1.00000 0.02000 1.00000 0.00000

0.02 1.02000 1.04000 0.02080 1.02040 -0.00040

0.04 1.04080 1.08080 0.02162 1.04162 -0.00082

0.06 1.06242 1.12242 0.02245 1.06367 -0.00126

0.08 1.08486 1.16486 0.02330 1.08657 -0.00171

0.1 1.10816 1.20816 0.02416 1.11034 -0.00218

0.12 1.13232 1.25232 0.02505 1.13499 -0.00267

0.14 1.15737 1.29737 0.02595 1.16055 -0.00318

0.16 1.18332 1.34332 0.02687 1.18702 -0.00370

0.18 1.21019 1.39019 0.02780 1.21443 -0.00425

0.2 1.23799 1.43799 0.02876 1.24281 -0.00482

Euler’s Method 

The trouble with this method is  

– Lack of accuracy 

– Small step size needed for accuracy 

• How do we improve it? 

• Euler’s equation was based on first order Taylor series 

– Maybe use higher order Taylor series 
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Runge-Kutta Methods 

The initial conditions are: 

 

 

To derive method we use the Taylor series 

expansion including 2nd order terms 

   
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Runge-Kutta Methods 

Expand the derivatives: 

 

 

The Taylor series expansion becomes 

 

 

Have expressed second derivative in terms of 1st 

derivatives of f 
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Runge-Kutta Methods 

•Look for a formula of the type 

 

 

 

 

• Goal is to find some intermediate points that allow 

us to approximate the second derivative  

•Specification of , , a,  and b provides the formula 

 

 

n 1 n 1 2

1 n n

2 n n 1

,

,

y y ak bk

k hf x y

k hf x h y k 
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
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Runge-Kutta Methods 

Look at formula we want for Runge-Kutta 

 

Perform a multivariate Taylor series expansion of 

the  function 

 

Expand, and group terms 

 n 1 n n n,y y ahf bhf x h y hf      
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Runge-Kutta Methods 

Compare with the Taylor series 

  2 2

n 1 n y y y a b hf b h f b h f f      

 

2

1

2

1

1







b

b

ba




4 Unknowns 
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Runge-Kutta Methods 

The Taylor series coefficients (3 equations/4 unknowns) 

 

If you select “a” as 
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Runge-Kutta Method (2nd Order) 

Example 

Consider                                   Exact Solution 

 

 

The initial condition is: 

The step size is: 

 

Use the coefficients 
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Runge-Kutta Method (2nd Order) Example 
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Runge-Kutta Method       (2nd 

Order) Example 
• The values are similar to that of the Modified Euler 

• also a second order method 

 

 

 

k1 Estimate Solution k2 Exact Error

xn yn y'n hy'n y*n+1 y*' n+1 h(y*'n+1 ) 

0 1.00000 -1.00000 -0.10000 0.90000 -0.81000 -0.08100 1.000000 0.000000

0.1 0.90950 -0.82719 -0.08272 0.82678 -0.68357 -0.06836 0.909091 -0.000409

0.2 0.83396 -0.69549 -0.06955 0.76441 -0.58433 -0.05843 0.833333 -0.000629

0.3 0.76997 -0.59286 -0.05929 0.71069 -0.50507 -0.05051 0.769231 -0.000740

0.4 0.71507 -0.51133 -0.05113 0.66394 -0.44082 -0.04408 0.714286 -0.000789

0.5 0.66747 -0.44551 -0.04455 0.62292 -0.38802 -0.03880 0.666667 -0.000801

0.6 0.62579 -0.39161 -0.03916 0.58663 -0.34413 -0.03441 0.625000 -0.000790

0.7 0.58900 -0.34692 -0.03469 0.55431 -0.30726 -0.03073 0.588235 -0.000768

0.8 0.55629 -0.30946 -0.03095 0.52535 -0.27599 -0.02760 0.555556 -0.000738

0.9 0.52702 -0.27775 -0.02778 0.49925 -0.24925 -0.02492 0.526316 -0.000705

1 0.50067 -0.25067 -0.02507 0.47560 -0.22620 -0.02262 0.500000 -0.000671

Runge-Kutta Methods 

• Fourth order Runge-Kutta method 

 

yn+1=y
n
+1/6(k1+2k2+2k3+k4) 

k1=hf(x,y) 

k2=h(f(x+h/2, y+1/2 k1) 

k3=h(f(x+h/2, y+1/2 k2) 

k4=h(f(x+h,y+k3)) 
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4th-order 
Runge-Kutta Method 

xi xi + h/2 xi + h 

f1 

f2 

f3 

f4 

 4321 22
6

1
fffff 

f

Volterra example 

• Write a function in standard form 

function f = rabfox(t,y) 

% Computes y' for the Volterra model. 

% y(1) is the number of rabbits at time t. 

% y(2) is the number of foxes at time t. 

global alpha % interaction constant 

t % a print statement, just so we can see how 

fast 

% the progress is, and what stepsize is being 

used 

f(1,1) = 2*y(1) - alpha*y(1)*y(2); 

f(2,1) = -y(2) + alpha*y(1)*y(2); 
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Study its solution for various values of encounter 

% Run the rabbit-fox model for various values of 

% the encounter parameter alpha, plotting each 

% solution. 

global alpha 

for i=2:-1:0, 

alpha = 10^(-i) 

[t,y] = ode45('rabfox',[0:.1:2], [20,10]); 

plot(t,y(:,1),'r',t,y(:,2),'b'); 

legend('rabbits','foxes') 

title(sprintf('alpha = %f',alpha)); 

pause 

end 

 

Stability 

• It turns out that explicit methods are not very stable 

• This means that the solution may oscillate if we use large 

time steps 

• So, if we wish to integrate over a large interval, and we 

need to take many small steps to achieve accuracy, many 

function evaluations are needed.  

• Implicit methods are usually more stable 


