
10/8/2013

1

Ordinary differential equations
• Mathematical modeling involves posing models and then

solving these models numerically or analytically

• ODEs represent a powerful method of modeling

– Especially if things depend on rates of change

• Rate of change of distance is velocity

v=dx/dt

• Knowing the velocity as a function of  we can integrate
using numerical quadrature

• Rate of change of velocity is acceleration

a=dv/dt =d2x/dt2

• Given initial conditions (v(0)=0, x(0)=0) find the
location x(t) at time t given that the object falls with a
constant acceleration of 10 m/s2

Solution by simple integration

 s dv=s 10dt

v = 10 t + c1

 s dx/dt dt=s 10t dt

x=10t2/2 + c1t +c2

• Use initial conditions

• v(0)=0 so c1 is zero

• x(0)=0 so c2 is zero

• Final solution x=5t2

• Could handle more complex functions of t under the

integral

10/8/2013

2

What if simple integration would not work?

• Example: Let the velocity be a function of x and t

• dx/dt=f(x,t)

• Cannot be simply integrated

• This is the typical type of problem we need to solve in

ODEs

• This is nonlinear because solution x depends on itself

• The linear case could be solved using numerical

quadrature

Standard form: Initial Value Problems for

ODEs
• We have an “ordinary” differential equation

• Standard form
𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦

– Subject to 𝑦 𝑎 = 𝑦0

• Goal provide values of y in an interval [a,b]

• For future assume

– Function f is given as a blackbox function which we can call

with specified numerical arguments

– y and f may be vector-valued

10/8/2013

3

Ordinary vs Partial

• ODE

– Everything is function of a single independent variable

• PDE

– There are several (more than one) independent variables

• ODEs are characterized by order and degree

Order and Degree

10/8/2013

4

Big picture: ODE for a function y(x)

• knowledge of a relation of its derivatives, the ODE,

which is given valid in a specified range of values of x

– y is assumed differentiable and continuous (at least so far that

the equation makes sense)

• Tool: Taylor series to express f(x) over polynomial basis

– Either solve for values of f(x) at specified locations

– Or, determine coefficients to polynomial approximation

• Will also need values of the function itself, and/or of its

derivatives at specified locations (side conditions)

– Initial value problem. Values of function and the derivatives

needed are specified at the beginning of the interval.

– Boundary value problem. Values are specified at the ends of

the interval

Standard form

• standard form,

y’ = f(t; y)

y(t0) = y0

•where the function y has m components,

•y’ means the derivative with respect to t, and

•y0 is a given vector of initial conditions (numbers).

•Writing this component-by-component yields

y’(1) = f1(t, y(1)… y(m))

…

y’(m) = fm(t, y(1)… y(m))

with y(1)(t0), …, y(m)(t0) given initial conditions

10/8/2013

5

Writing a 2nd order system in standard form

u’’ = g(t, u, u’)

u(0) = u0

u’(0) = v0

• where u0 and v0 are given.

• Let y1 = u and y2 = u’. Then, in standard form:

y2’=g(t,y1,y2)

y1
’=y2

y1(0)=u0 y2(0)=v0

A modeling exercise: predator prey problems

• Eco-system (island) that contains rabbits and foxes

• Island has plenty of food for rabbits

• Rabbits reproduce like crazy and would fill-up the island

• Foxes eat rabbits

• Let r(t) represent the number of rabbits and f (t) the

number of foxes.

• Model the number of rabbits and foxes on the island and

decide if it will reach an equilibrium

10/8/2013

6

Rabbit and fox population

• Rabbit population will grow at a certain rate

– a is the natural growth rate of rabbits in the absence of predation,

• Rabbits will die as they are eaten by foxes. Let the rabbit die if it

encounters a fox.

– b is the death rate per encounter of rabbits due to predation,

• Fox population dies off if they cannot eat rabbits

– c is the natural death rate of foxes in the absence of food (rabbits),

• Foxes reproduce if they have food

– e is the efficiency of turning predated rabbits into foxes.

• Initial conditions R(0)=r0 and F(0)=f0

• Volterra equations

dR/dt = aR - bRF

dF/dt = ebRF – cF

Standard form
• Volterra’s model

dR/dt = 2R -  RF

dF/dt =  RF – F

• Another example (Kepler)

function ydot = twobody(t,y)

r = sqrt(y(1)^2 + y(2)^2);

ydot = [y(3); y(4); -y(1)/r^3; -y(2)/r^3];

10/8/2013

7

Taylor Series

• Let f(x) be a real valued function with n derivatives in

𝑎 ≤ 𝑥 ≤ 𝑏. Then

𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
1

2!
𝑓′′ 𝑎 𝑥 − 𝑎 2 +⋯

+
1

𝑛 − 1 !
𝑓 𝑛−1 𝑎 𝑥 − 𝑎 𝑛−1 + 𝑅𝑛

𝑅𝑛 ≤
𝑥 − 𝑎 𝑛

𝑛!
sup

𝑦∈[𝑎,𝑏)
𝑓 𝑛−1 𝑦

This provides us the values of f at any point x in terms of its

values and that of its derivatives at a.

Solving differential equations: Euler’s method

• use Taylor series

• Euler’s method

y(t + h) = y(t) + hy’(t) + h2/2 y’’()

for some point  in [t,· t + h]

• Note that

y’(t) = f(t,y(t)):

 March forward

y(h)=y1 =y(0)+hy’ (0)

=y0+hf(t0,y0)

yn+1=yn+hfn

10/8/2013

8

yx
dx

dy
   10 y   12 x  xexy

Euler’s Method:First-order Taylor

00 y)y(x);y,x(fy
dx

dy


x0 x1 x2 x3

y0

h h h

Straight line approximation

Euler’s Method Example

The initial condition is:

The step size is:

Loop using initial conditions and definition of the derivative

The derivative is calculated as:

The next y value is calculated:

Take the next step:

02.0h

  10 y
yx

dx

dy


iii yxy 

ii1i yhyy 

hxx  i1i

10/8/2013

9

Euler’s Method Example

The results

Exact Error

xn yn y'n hy'n Solution

0 1.00000 1.00000 0.02000 1.00000 0.00000

0.02 1.02000 1.04000 0.02080 1.02040 -0.00040

0.04 1.04080 1.08080 0.02162 1.04162 -0.00082

0.06 1.06242 1.12242 0.02245 1.06367 -0.00126

0.08 1.08486 1.16486 0.02330 1.08657 -0.00171

0.1 1.10816 1.20816 0.02416 1.11034 -0.00218

0.12 1.13232 1.25232 0.02505 1.13499 -0.00267

0.14 1.15737 1.29737 0.02595 1.16055 -0.00318

0.16 1.18332 1.34332 0.02687 1.18702 -0.00370

0.18 1.21019 1.39019 0.02780 1.21443 -0.00425

0.2 1.23799 1.43799 0.02876 1.24281 -0.00482

Euler’s Method

The trouble with this method is

– Lack of accuracy

– Small step size needed for accuracy

• How do we improve it?

• Euler’s equation was based on first order Taylor series

– Maybe use higher order Taylor series

10/8/2013

10

Runge-Kutta Methods

The initial conditions are:

To derive method we use the Taylor series

expansion including 2nd order terms

   
   22

n n n n

n 1 n 2

, ,

2!

dy x y d y x yh
y x y x h

dx dx
   

 yxf
dx

dy
,   00 yxy 

Runge-Kutta Methods

Expand the derivatives:

The Taylor series expansion becomes

Have expressed second derivative in terms of 1st

derivatives of f

 2

n 1 n x y

1

2
y y hf h f f f

 
     

   fff
dx

dy
ffyxf

dx

d

dx

yd
yxyx2

2

, 

10/8/2013

11

Runge-Kutta Methods

•Look for a formula of the type

• Goal is to find some intermediate points that allow

us to approximate the second derivative

•Specification of , , a, and b provides the formula

 

 

n 1 n 1 2

1 n n

2 n n 1

,

,

y y ak bk

k hf x y

k hf x h y k 

   



   

Runge-Kutta Methods

Look at formula we want for Runge-Kutta

Perform a multivariate Taylor series expansion of

the function

Expand, and group terms

 n 1 n n n,y y ahf bhf x h y hf      

 n n x y, f x h y hf f hf hf f       

 

 

n 1 n x y

2 2

n y

y y ahf bh f hf hf f

y a b hf b h f b h f f

 

 

     

    
x

10/8/2013

12

Runge-Kutta Methods

Compare with the Taylor series

  2 2

n 1 n y y y a b hf b h f b h f f      

 

2

1

2

1

1







b

b

ba




4 Unknowns

3 Equations

 2

n 1 n x y

1

2
y y hf h f f f

 
     

Runge-Kutta Methods

The Taylor series coefficients (3 equations/4 unknowns)

If you select “a” as

If you select “a” as

 
2

1
 ,

2

1
 ,1  bbba 

2

3
 ,

2

3
 ,

3

1
 ,

3

2
 ba

1 ,
2

1

2

1
 ba

10/8/2013

13

Runge-Kutta Method (2nd Order)

Example

Consider Exact Solution

The initial condition is:

The step size is:

Use the coefficients

1.0h

  10 y

2y
dx

dy


1 ,
2

1

2

1
 ba

x
y




1

1

Runge-Kutta Method (2nd Order) Example

 

 

 

1 i i

2 i i 1

i 1 i 1 2

,

,

1

2

k hf x y

k hf x h y k

y y k k



  

  

1 ,
2

1

2

1
 ba

1.0h

10/8/2013

14

Runge-Kutta Method (2nd

Order) Example
• The values are similar to that of the Modified Euler

• also a second order method

k1 Estimate Solution k2 Exact Error

xn yn y'n hy'n y*n+1 y*' n+1 h(y*'n+1)

0 1.00000 -1.00000 -0.10000 0.90000 -0.81000 -0.08100 1.000000 0.000000

0.1 0.90950 -0.82719 -0.08272 0.82678 -0.68357 -0.06836 0.909091 -0.000409

0.2 0.83396 -0.69549 -0.06955 0.76441 -0.58433 -0.05843 0.833333 -0.000629

0.3 0.76997 -0.59286 -0.05929 0.71069 -0.50507 -0.05051 0.769231 -0.000740

0.4 0.71507 -0.51133 -0.05113 0.66394 -0.44082 -0.04408 0.714286 -0.000789

0.5 0.66747 -0.44551 -0.04455 0.62292 -0.38802 -0.03880 0.666667 -0.000801

0.6 0.62579 -0.39161 -0.03916 0.58663 -0.34413 -0.03441 0.625000 -0.000790

0.7 0.58900 -0.34692 -0.03469 0.55431 -0.30726 -0.03073 0.588235 -0.000768

0.8 0.55629 -0.30946 -0.03095 0.52535 -0.27599 -0.02760 0.555556 -0.000738

0.9 0.52702 -0.27775 -0.02778 0.49925 -0.24925 -0.02492 0.526316 -0.000705

1 0.50067 -0.25067 -0.02507 0.47560 -0.22620 -0.02262 0.500000 -0.000671

Runge-Kutta Methods

• Fourth order Runge-Kutta method

yn+1=y
n
+1/6(k1+2k2+2k3+k4)

k1=hf(x,y)

k2=h(f(x+h/2, y+1/2 k1)

k3=h(f(x+h/2, y+1/2 k2)

k4=h(f(x+h,y+k3))

10/8/2013

15

4th-order
Runge-Kutta Method

xi xi + h/2 xi + h

f1

f2

f3

f4

 4321 22
6

1
fffff 

f

Volterra example

• Write a function in standard form

function f = rabfox(t,y)

% Computes y' for the Volterra model.

% y(1) is the number of rabbits at time t.

% y(2) is the number of foxes at time t.

global alpha % interaction constant

t % a print statement, just so we can see how

fast

% the progress is, and what stepsize is being

used

f(1,1) = 2*y(1) - alpha*y(1)*y(2);

f(2,1) = -y(2) + alpha*y(1)*y(2);

10/8/2013

16

Study its solution for various values of encounter

% Run the rabbit-fox model for various values of

% the encounter parameter alpha, plotting each

% solution.

global alpha

for i=2:-1:0,

alpha = 10^(-i)

[t,y] = ode45('rabfox',[0:.1:2], [20,10]);

plot(t,y(:,1),'r',t,y(:,2),'b');

legend('rabbits','foxes')

title(sprintf('alpha = %f',alpha));

pause

end

Stability

• It turns out that explicit methods are not very stable

• This means that the solution may oscillate if we use large

time steps

• So, if we wish to integrate over a large interval, and we

need to take many small steps to achieve accuracy, many

function evaluations are needed.

• Implicit methods are usually more stable

