Ordinary differential equations

- Mathematical modeling involves posing models and then solving these models numerically or analytically
- ODEs represent a powerful method of modeling - Especially if things depend on rates of change
- Rate of change of distance is velocity

$$v = dx/dt \qquad x(t) = \int_0^t \frac{dx}{d\tau} d\tau$$

- Knowing the velocity as a function of τ we can integrate using numerical quadrature
- Rate of change of velocity is acceleration

$$a = dv/dt = d^2x/dt^2$$

Given initial conditions (v(0)=0, x(0)=0) find the location x(t) at time t given that the object falls with a constant acceleration of 10 m/s²

Solution by simple integration

 $\int dv = \int 10 dt$ $v = 10 t + c_1$ $\int dx/dt dt = \int 10t dt$ $x = 10t^2/2 + c_1t + c_2$

- Use initial conditions
- v(0)=0 so c_1 is zero
- x(0)=0 so c_2 is zero
- Final solution $x=5t^2$
- Could handle more complex functions of t under the integral $\frac{dx}{dt} = f(t)$ $x(t) = \int_0^t f(\tau) d\tau$

What if simple integration would not work?

• Example: Let the velocity be a function of x and t

•
$$dx/dt = f(x,t)$$
 $x(t) = \int_0^t f(x(\tau),\tau)d\tau$

- Cannot be simply integrated
- This is the typical type of problem we need to solve in ODEs
- This is nonlinear because solution x depends on itself
- The linear case could be solved using numerical quadrature

Standard form: Initial Value Problems for ODEs

- We have an "ordinary" differential equation
- Standard form

$$\frac{dy}{dx} = f(x, y)$$

- Subject to $y(a) = y_0$

- Goal provide values of *y* in an interval [*a*,*b*]
- For future assume
 - Function *f* is given as a blackbox function which we can call with specified numerical arguments
 - -y and f may be vector-valued

Ordinary vs Partial

- ODE
 - Everything is function of a single independent variable
- PDE
 - There are several (more than one) independent variables
- ODEs are characterized by order and degree

Order and Degree

Differential equations are often classified with respect to **order**. The order of a differential equation is the order of the highest order derivative present in the equation.

Example 1

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 4x \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = y \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \mathrm{e}^y \qquad \text{has order 3.}$$

The **degree** of a differential equation is the power of the highest order derivative in the equation. In previous example the degree is 1.

Example 2

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^3 + \frac{\mathrm{d}y}{\mathrm{d}x} = \sin x$$
 is of order 2 and degree 3.

Big picture: ODE for a function y(x)

• knowledge of a relation of its derivatives, the ODE, which is given valid in a specified range of values of x

 y is assumed differentiable and continuous (at least so far that the equation makes sense)

- Tool: Taylor series to express f(x) over polynomial basis
 - Either solve for values of f(x) at specified locations
 - Or, determine coefficients to polynomial approximation
- Will also need values of the function itself, and/or of its derivatives at specified locations (side conditions)
 - **Initial value problem.** Values of function and the derivatives needed are specified at the beginning of the interval.
 - Boundary value problem. Values are specified at the ends of the interval

Standard form

• standard form,

$$y' = f(t; y)$$
$$y(t_0) = y_0$$

•where the function *y* has *m* components,

•y' means the derivative with respect to t, and

• y_0 is a given vector of initial conditions (numbers).

•Writing this component-by-component yields

$$y'_{(1)} = f_1(t, y_{(1)} \dots y_{(m)})$$
...

$$y'_{(m)} = f_m(t, y_{(1)} \dots y_{(m)})$$

with $y_{(1)}(t_0), \ldots, y_{(m)}(t_0)$ given initial conditions

Writing a 2nd order system in standard form

$$u'' = g(t, u, u')$$

 $u(0) = u_0$
 $u'(0) = v_0$

- where u_0 and v_0 are given.
- Let $y_1 = u$ and $y_2 = u'$. Then, in standard form:

$$y_2' = g(t, y_1, y_2)$$

 $y_1' = y_2$
 $y_1(0) = u_0 \quad y_2(0) = v_0$

A modeling exercise: predator prey problems

- Eco-system (island) that contains rabbits and foxes
- Island has plenty of food for rabbits
- Rabbits reproduce like crazy and would fill-up the island
- Foxes eat rabbits
- Let r(t) represent the number of rabbits and f(t) the number of foxes.
- Model the number of rabbits and foxes on the island and decide if it will reach an equilibrium

Rabbit and fox population

- Rabbit population will grow at a certain rate
 - -a is the natural growth rate of rabbits in the absence of predation,
- Rabbits will die as they are eaten by foxes. Let the rabbit die if it encounters a fox.
 - -b is the death rate per encounter of rabbits due to predation,
- Fox population dies off if they cannot eat rabbits
 - c is the natural death rate of foxes in the absence of food (rabbits),
- Foxes reproduce if they have food
 - -e is the efficiency of turning predated rabbits into foxes.
- Initial conditions $R(0)=r_0 \text{ and } F(0)=f_0$
- Volterra equations

$$\frac{dR}{dt} = aR - bRF$$
$$\frac{dF}{dt} = ebRF - cF$$

Standard form

• Volterra's model

$$\frac{dR}{dt} = 2R - \alpha RF$$
$$\frac{dF}{dt} = \alpha RF - F$$

• Another example (Kepler) The vector y(t) has four components,

$$\begin{array}{c} \ddot{u}(t) = -u(t)/r(t)^3 \\ \ddot{v}(t) = -v(t)/r(t)^3 \end{array} \qquad \qquad y(t) = \begin{bmatrix} u(t) \\ v(t) \\ \dot{u}(t) \\ \dot{v}(t) \end{bmatrix}$$

where

$$r(t) = \sqrt{u(t)^2 + v(t)^2}$$

The differential equation is

$$\begin{aligned} \dot{y}(t) &= \sqrt{u(t)} + v(t) \\ \text{function ydot} &= \text{twobody(t,y)} \\ \textbf{r} &= \text{sqrt}(y(1)^2 + y(2)^2); \\ \text{ydot} &= [y(3); \ y(4); \ -y(1)/r^3; \ -y(2)/r^3]; \end{aligned} \qquad \begin{bmatrix} \dot{u}(t) \\ \dot{v}(t) \\ -u(t)/r(t)^3 \\ -v(t)/r(t)^3 \end{bmatrix}$$

Taylor Series

Let *f*(*x*) be a real valued function with *n* derivatives in *a* ≤ *x* ≤ *b*. Then

$$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2!}f''(a)(x - a)^2 + \cdots + \frac{1}{(n-1)!}f^{(n-1)}(a)(x - a)^{n-1} + R_n R_n \le \frac{|x - a|^n}{n!} \sup_{y \in [a,b)} |f^{(n-1)}(y)|$$

This provides us the values of f at any point x in terms of its values and that of its derivatives at a.

Solving differential equations: Euler's method

- use Taylor series
- Euler's method

$$y(t+h) = y(t) + hy'(t) + h^2/2 \qquad y''(\xi)$$

for some point ξ in $[t, \le t+h]$

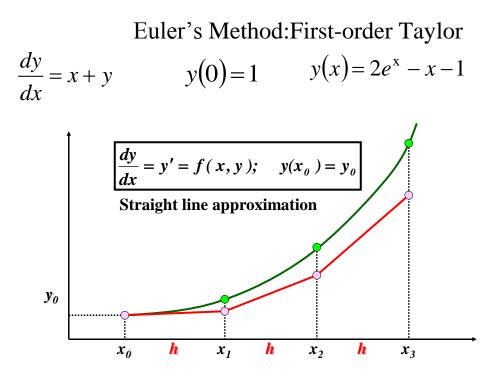
• Note that

$$y'(t) = f(t, y(t)).$$

 \Box March forward

$$y(h) = y_1 = y(0) + hy'(0)$$

= $y_0 + hf(t_0, y_0)$
 $y_{n+1} = y_n + hf_n$



Euler's Method Example

The initial condition is: y(0) = 1The step size is: $\Delta h = 0.02$ Loop using initial conditions and definition of the derivative The derivative is calculated as: $y'_i = x_i + y_i$

The next y value is calculated: $y_{i+1} = y_i + \Delta h y'_i$

Take the next step:
$$x_{i+1} = x_i + \Delta h$$

Euler's Method Example

The results

		Exa		Exact	Error	
Xn	y _n	y'n	hy'n	Solution		
0	1.00000	1.00000	0.02000	1.00000	0.00000	
0.02	1.02000	1.04000	0.02080	1.02040	-0.00040	
0.04	1.04080	1.08080	0.02162	1.04162	-0.00082	
0.06	1.06242	1.12242	0.02245	1.06367	-0.00126	
0.08	1.08486	1.16486	0.02330	1.08657	-0.00171	
0.1	1.10816	1.20816	0.02416	1.11034	-0.00218	
0.12	1.13232	1.25232	0.02505	1.13499	-0.00267	
0.14	1.15737	1.29737	0.02595	1.16055	-0.00318	
0.16	1.18332	1.34332	0.02687	1.18702	-0.00370	
0.18	1.21019	1.39019	0.02780	1.21443	-0.00425	
0.2	1.23799	1.43799	0.02876	1.24281	-0.00482	

Euler's Method

The trouble with this method is

- Lack of accuracy
- Small step size needed for accuracy
- How do we improve it?
- Euler's equation was based on first order Taylor series
 - Maybe use higher order Taylor series

Runge-Kutta Methods

The initial conditions are:

$$\frac{dy}{dx} = f(x, y) \qquad \qquad y(x_0) = y_0$$

To derive method we use the Taylor series expansion including 2nd order terms

$$y(x_{n+1}) = y(x_n) + h \frac{dy(x_n, y_n)}{dx} + \frac{h^2}{2!} \frac{d^2 y(x_n, y_n)}{dx^2}$$

Runge-Kutta Methods

Expand the derivatives:

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[f(x, y) \right] = f_x + f_y \frac{dy}{dx} = f_x + f_y f$$

The Taylor series expansion becomes

$$y_{n+1} = y_n + hf + h^2 \left[\frac{1}{2} (f_x + f_y f) \right]$$

Have expressed second derivative in terms of 1^{st} derivatives of f

Runge-Kutta Methods

•Look for a formula of the type

$$y_{n+1} = y_n + ak_1 + bk_2$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \alpha \Delta h, y_n + \beta k_1)$$

• Goal is to find some intermediate points that allow us to approximate the second derivative

•Specification of α , β , *a*, and *b* provides the formula

Runge-Kutta Methods

Look at formula we want for Runge-Kutta

 $y_{n+1} = y_n + ahf + bhf(x_n + \alpha h, y_n + \beta hf)$

Perform a multivariate Taylor series expansion of the function

$$f(x_{n} + \alpha h, y_{n} + \beta h f) = f + \alpha h f_{x} + \beta h f f_{y}$$

Expand, and group terms

$$y_{n+1} = y_n + ahf + bh(f + \alpha hf_x + \beta hf f_y)$$
$$= y_n + [a+b]hf + b\alpha h^2 f_x + b\beta h^2 f f_y$$

Runge-Kutta Methods

Compare with the Taylor series

$$y_{n+1} = y_n + [a+b]hf + b\alpha h^2 f + b\beta h^2 f f_y$$

$$y_{n+1} = y_n + hf + h^2 \left[\frac{1}{2} (f_x + f_y f) \right]$$

$$\begin{bmatrix} a+b \end{bmatrix} = 1$$

$$\alpha b = \frac{1}{2}$$

$$\beta b = \frac{1}{2}$$

$$\frac{4 \text{ Unknowns}}{3 \text{ Equations}}$$

Runge-Kutta Methods

The Taylor series coefficients (3 equations/4 unknowns)

$$[a+b]=1, \ \alpha b = \frac{1}{2}, \ \beta b = \frac{1}{2}$$

If you select "*a*" as

$$a = \frac{2}{3}, b = \frac{1}{3}, \alpha = \frac{3}{2}, \beta = \frac{3}{2}$$

If you select "*a*" as

$$a = \frac{1}{2} b = \frac{1}{2}, \ \alpha = \beta = 1$$

Runge-Kutta Method (2nd Order) Example

Consider $\frac{dy}{dx} = -y^{2}$ Exact Solution $y = \frac{1}{1+x}$ The initial condition is: y(0) = 1The step size is: $\Delta h = 0.1$

Use the coefficients
$$a = \frac{1}{2} b = \frac{1}{2}, \ \alpha = \beta = 1$$

Runge-Kutta Method (2nd Order) Example

$$\Delta h = 0.1$$

$$a = \frac{1}{2} \ b = \frac{1}{2}, \ \alpha = \beta = 1$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_i + h, y_i + k_1)$$

$$y_{i+1} = y_i + \frac{1}{2}[k_1 + k_2]$$

Runge-Kutta Method (2nd Order) Example

- The values are similar to that of the Modified Euler
 - also a second order method

			k1	Estimate	Solution	k ₂	Exact	Error
Xn	yn	y'n	hy'n	y* _{n+1}	y*' n+1	h(y*' _{n+1})		
0	1.00000	-1.00000	-0.10000	0.90000	-0.81000	-0.08100	1.000000	0.000000
0.1	0.90950	-0.82719	-0.08272	0.82678	-0.68357	-0.06836	0.909091	-0.000409
0.2	0.83396	-0.69549	-0.06955	0.76441	-0.58433	-0.05843	0.833333	-0.000629
0.3	0.76997	-0.59286	-0.05929	0.71069	-0.50507	-0.05051	0.769231	-0.000740
0.4	0.71507	-0.51133	-0.05113	0.66394	-0.44082	-0.04408	0.714286	-0.000789
0.5	0.66747	-0.44551	-0.04455	0.62292	-0.38802	-0.03880	0.666667	-0.000801
0.6	0.62579	-0.39161	-0.03916	0.58663	-0.34413	-0.03441	0.625000	-0.000790
0.7	0.58900	-0.34692	-0.03469	0.55431	-0.30726	-0.03073	0.588235	-0.000768
0.8	0.55629	-0.30946	-0.03095	0.52535	-0.27599	-0.02760	0.555556	-0.000738
0.9	0.52702	-0.27775	-0.02778	0.49925	-0.24925	-0.02492	0.526316	-0.000705
1	0.50067	-0.25067	-0.02507	0.47560	-0.22620	-0.02262	0.500000	-0.000671

Runge-Kutta Methods

• Fourth order Runge-Kutta method

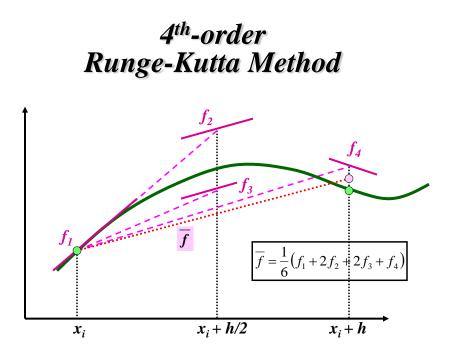
$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x, y)$$

$$k_2 = h(f(x+h/2, y+1/2 k_1))$$

$$k_3 = h(f(x+h/2, y+1/2 k_2))$$

$$k_4 = h(f(x+h, y+k_3))$$



Volterra example

```
Write a function in standard form
function f = rabfox(t,y)
% Computes y' for the Volterra model.
% y(1) is the number of rabbits at time t.
% y(2) is the number of foxes at time t.
global alpha % interaction constant
t % a print statement, just so we can see how
fast
% the progress is, and what stepsize is being
used
f(1,1) = 2*y(1) - alpha*y(1)*y(2);
f(2,1) = -y(2) + alpha*y(1)*y(2);
```

Study its solution for various values of encounter

% Run the rabbit-fox model for various values of % the encounter parameter alpha, plotting each % solution. global alpha for i=2:-1:0, alpha = 10^(-i) [t,y] = ode45('rabfox',[0:.1:2], [20,10]); plot(t,y(:,1),'r',t,y(:,2),'b'); legend('rabbits','foxes') title(sprintf('alpha = %f',alpha)); pause end

Stability

- It turns out that explicit methods are not very stable
- This means that the solution may oscillate if we use large time steps
- So, if we wish to integrate over a large interval, and we need to take many small steps to achieve accuracy, many function evaluations are needed.
- Implicit methods are usually more stable